392 research outputs found

    Stress relaxation in F-actin solutions by severing

    Full text link
    Networks of filamentous actin (F-actin) are important for the mechanics of most animal cells. These cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that control cross-linking, polymerization and force generation in the cytoskeleton. Inspired by recent rheological experiments on reconstituted solutions of dynamic actin filaments, we report a theoretical model that describes stress relaxation behavior of these solutions in the presence of severing proteins. We show that depending on the kinetic rates of assembly, disassembly, and severing, one can observe both length-dependent and length-independent relaxation behavior

    Monte Carlo study of multiply crosslinked semiflexible polymer networks

    Get PDF
    We present a method to generate realistic, three-dimensional networks of crosslinked semiflexible polymers. The free energy of these networks is obtained from the force-extension characteristics of the individual polymers and their persistent directionality through the crosslinks. A Monte Carlo scheme is employed to obtain isotropic, homogeneous networks that minimize the free energy, and for which all of the relevant parameters can be varied: the persistence length, the contour length as well as the crosslinking length may be chosen at will. We also provide an initial survey of the mechanical properties of our networks subjected to shear strains, showing them to display the expected non-linear stiffening behavior. Also, a key role for non-affinity and its relation to order in the network is uncovered.Comment: 11 pages, revised figures, added extra information about the network

    Microrheology probes length scale dependent rheology

    Get PDF
    We exploit the power of microrheology to measure the viscoelasticity of entangled F-actin solutions at different length scales from 1 to 100 mu m over a wide frequency range. We compare the behavior of single probe-particle motion to that of the correlated motion of two particles. By varying the average length of the filaments, we identify fluctuations that dissipate diffusively over the filament length. These provide an important relaxation mechanism of the elasticity between 0.1 and 30 rad/sec

    A Zyxin-Mediated Mechanism for Actin Stress Fiber Maintenance and Repair

    Get PDF
    SummaryTo maintain mechanical homeostasis, cells must recognize and respond to changes in cytoskeletal integrity. By imaging live cells expressing fluorescently tagged cytoskeletal proteins, we observed that actin stress fibers undergo local, acute, force-induced elongation and thinning events that compromise their stress transmission function, followed by stress fiber repair that restores this capability. The LIM protein zyxin rapidly accumulates at sites of strain-induced stress fiber damage and is essential for stress fiber repair and generation of traction force. Zyxin promotes recruitment of the actin regulatory proteins α-actinin and VASP to compromised stress fiber zones. α-Actinin plays a critical role in restoration of actin integrity at sites of local stress fiber damage, whereas both α-actinin and VASP independently contribute to limiting stress fiber elongation at strain sites, thus promoting stabilization of the stress fiber. Our findings demonstrate a mechanism for rapid repair and maintenance of the structural integrity of the actin cytoskeleton

    Stress-Dependent Elasticity of Composite Actin Networks as a Model for Cell Behavior

    Get PDF
    Networks of filamentous actin cross-linked with the actin-binding protein filamin A exhibit remarkable strain stiffening leading to an increase in differential elastic modulus by several orders of magnitude over the linear value. The variation of the frequency dependence of the differential elastic and loss moduli as a function of prestress is consistent with that observed in living cells, suggesting that cell elasticity is always measured in the nonlinear regime, and that prestress is an essential control parameter

    Size-dependent rheology of type-I collagen networks

    Get PDF
    We investigate the system size dependent rheological response of branched type I collagen gels. When subjected to a shear strain, the highly interconnected mesh dynamically reorients, resulting in overall stiffening of the network. When a continuous shear strain is applied to a collagen network, we observe that the local apparent modulus, in the strain-stiffening regime, is strongly dependent on the gel thickness. In addition, we demonstrate that the overall network failure is determined by the ratio of the gel thickness to the mesh size. These findings have broad implications for cell-matrix interactions, the interpretation of rheological tissue data, and the engineering of biomimetic scaffolds.Comment: 3 pages, 4 figures, to appear in Biophysical Journal Letters, September 201

    CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling

    Get PDF
    Integrin-dependent assembly of the fibronectin (Fn) matrix plays a central role in vertebrate development. We identify CD98hc, a membrane protein, as an important component of the matrix assembly machinery both in vitro and in vivo. CD98hc was not required for biosynthesis of cellular Fn or the maintenance of the repertoire or affinity of cellular Fn binding integrins, which are important contributors to Fn assembly. Instead, CD98hc was involved in the cell's ability to exert force on the matrix and did so by dint of its capacity to interact with integrins to support downstream signals that lead to activation of RhoA small GTPase. Thus, we identify CD98hc as a membrane protein that enables matrix assembly and establish that it functions by interacting with integrins to support RhoA-driven contractility. CD98hc expression can vary widely; our data show that these variations in CD98hc expression can control the capacity of cells to assemble an Fn matrix, a process important in development, wound healing, and tumorigenesis

    Hydrodynamic coupling and rotational mobilities near planar elastic membranes

    Get PDF
    We study theoretically and numerically the coupling and rotational hydrodynamic interactions between spherical particles near a planar elastic membrane that exhibits resistance towards shear and bending. Using a combination of the multipole expansion and Faxen's theorems, we express the frequency-dependent hydrodynamic mobility functions as a power series of the ratio of the particle radius to the distance from the membrane for the self mobilities, and as a power series of the ratio of the radius to the interparticle distance for the pair mobilities. In the quasi-steady limit of zero frequency, we find that the shear- and bending-related contributions to the particle mobilities may have additive or suppressive effects depending on the membrane properties in addition to the geometric configuration of the interacting particles relative to the confining membrane. To elucidate the effect and role of the change of sign observed in the particle self and pair mobilities, we consider an example involving a torque-free doublet of counterrotating particles near an elastic membrane. We find that the induced rotation rate of the doublet around its center of mass may differ in magnitude and direction depending on the membrane shear and bending properties. Near a membrane of only energetic resistance toward shear deformation, such as that of a certain type of elastic capsules, the doublet undergoes rotation of the same sense as observed near a no-slip wall. Near a membrane of only energetic resistance toward bending, such as that of a fluid vesicle, we find a reversed sense of rotation. Our analytical predictions are supplemented and compared with fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied frequencies.Comment: 14 pages, 7 figures. Revised manuscript resubmitted to J. Chem. Phy

    High level synthesis FPGA implementation of the Jacobi algorithm to solve the Eigen problem

    Get PDF
    We present a hardware implementation of the Jacobi algorithm to compute the eigenvalue decomposition (EVD). The computation of eigenvalues and eigenvectors has many applications where real time processing is required, and thus hardware implementations are often mandatory. Some of these implementations have been carried out with field programmable gate array (FPGA) devices using low level register transfer level (RTL) languages. In the present study, we used the Xilinx Vivado HLS tool to develop a high level synthesis (HLS) design and evaluated different hardware architectures. After analyzing the design for different input matrix sizes and various hardware configurations, we compared it with the results of other studies reported in the literature, concluding that although resource usage may be higher when HLS tools are used, the design performance is equal to or better than low level hardware designs. © 2015 Ignacio Bravo et al
    • …
    corecore