27 research outputs found

    Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT)

    Full text link
    [EN] The effect of two hydrophobic treatments on the hydrophilic nature of halloysite nanotubes (HNT) was studied in this research work: a silanization with (3-glycidyloxypropyl) trimethoxysilane (GLYMO) and a surface treatment with a natural aromatic compound, i.e. caffeic acid (CA). In addition, the effect of 3¿wt% of unmodified HNT, silanized HNT (HNTSIL) and caffeic acid-modified HNT (HNTCA) on mechanical, thermal and morphological properties of a binary blend of poly(3-hydroxybutyrate) (PHB) and poly(¿-caprolactone) (PCL) with a weight ratio of 75/25, respectively was evaluated. These blends and their corresponding composites with HNT were partially compatibilized by reactive extrusion with dicumyl peroxide (DCP) and further processed by injection molding. The effectiveness of the surface treatments on HNT was followed by Fourier transformed infrared spectroscopy (FTIT), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and contact angle measurements. The obtained results suggested a clear hydrophobizing effect of both surface treatments on HNT but the hydrophobic nature the caffeic acid treatment can provide to HNT is greater than silanization. FESEM study on HNT-loaded PHB/PCL blends showed increased compatibility between modified-HNT and the polymeric matrix, as well as a better particle dispersion. In particular, 3¿wt% HNTCA lead to an increase in tensile strength and elongation at break of 11.4% and 74%, respectively, with regard to composites with unmodified HNT. In addition, thermal analysis, evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), revealed a decrease in the melt peak temperature of 6.5¿°C for composites with 3¿wt% HNTCA as well a delay in the onset degradation temperature, thus leading to a broader processing window which enhances PHB processing by conventional techniques.This work was supported by the Ministry of Economy and Competitiveness (MINECO) [MAT2017-84909-C2-2-R]. D. Garcia-Garcia wants to thank the Spanish Ministry of Education, Culture and Sports for the financial support through a FPU grant [FPU13/06011].Garcia-Garcia, D.; Garcia-Sanoguera, D.; Fombuena, V.; López-Martínez, J.; Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science. 162:487-498. https://doi.org/10.1016/j.clay.2018.06.042S48749816

    Application of antimicrobial microcapsules on agrotextiles

    Full text link
    [EN] The aim of this work was to develop a functional biodegradable nonwoven with antimicrobial microcapsules maintaining the stability and biodegradability of the nonwoven for use in agriculture applications. The nonwoven was obtained using hemp fibers by Wetlaid technology. Microcapsules were prepared by co-extrusion/gelling method with alginate as shell and oregano oil as core material. The microcapsules were developed to protect and control release of oregano oil. Microcapsules were incorporated on the nonwoven by coating method using a natural polymer as a graft material. After incorporating microcapsules, the nonwoven was subjected to several tests in order to determinate the microcapsules fixation and their functionality. The nonwovens were characterized for their antimicrobial activity against different kinds of bacteria and fungi. Nonwoven loaded with microcapsules was found to show good antimicrobial activity in comparison with nonwoven that was not loaded with microcapsules.The authors thank IVACE (Institut Valencià de Competitivitat Empresarial, Spain) and FEDER (Fondo Europeo de Desarrollo Regional, Europe) for the financial support.Ferrándiz, M.; Capablanca, L.; Garcia-Sanoguera, D.; Bonet-Aracil, M. (2017). Application of antimicrobial microcapsules on agrotextiles. Journal of Agricultural Chemistry and Environment. 6(1):62-82. doi:10.4236/jacen.2017.61004S62826

    Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers

    Full text link
    [EN] This work reports the enhancement of the properties of poly (butylene succinate) (PBS) composites containing 30 wt% almond shell flour (ASF) by using different compatibilizer families: epoxy, maleic anhydride and acrylic. With regard to the epoxy compatibilizers, epoxidized linseed oil (ELO) and epoxidized soybean oil (ESBO) were used. Two maleic anhydride-derived compatibilizers, namely, maleinized linseed oil (MLO) and dodecenyl succinic anhydride (DDSA) were used. Finally, two acrylic monomers, namely methyl methacrylate (MMA) and acrylic acid (AA) were employed. Uncompatibilized and compatibilized PBS/ASF composites were characterized in terms of their mechanical properties, morphology, thermal behaviour and thermomechanical performance. The obtained results suggest that all three vegetable oil-derived compatibilizers (ELO, ESBO and MLO) give a remarkable increase in ductile properties while poor compatibilization is obtained with the acrylic monomers. These vegetable-oil derived compatibilizers could represents an interesting environmentally friendly solution to compatibilizing polyester-type polymers and their composites with lignocellulosic materials.This work was supported by the Ministry of Economy and Competitiveness (MINECO) grant numbers MAT2014-59242-C2-1-R and MAT2017-84909-C2-2-R. L. Quiles-Carrillo acknowledges Generalitat Valenciana (GV) for financial support through a FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812).Liminana, P.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B Engineering. 144:153-162. https://doi.org/10.1016/j.compositesb.2018.02.031S15316214

    Manufacturing and Characterization of Environmentally Friendly Wood Plastic Composites Using Pinecone as a Filler into a Bio-Based High-Density Polyethylene Matrix

    Full text link
    [EN] The use of wood plastic composites (WPC) is growing very rapidly in recent years, in addition, the use of plastics of renewable origin is increasingly implemented because it allows to reduce the carbon footprint. In this context, this work reports on the development of composites of bio-based high density polyethylene (BioHDPE) with different contents of pinecone (5, 10, and 30 wt.%). The blends were produced by extrusion and injection-molded processes. With the objective of improving the properties of the materials, a compatibilizer has been used, namely polyethylene grafted with maleic anhydride (PE-g-MA 2 phr). The effect of the compatibilizer in the blend with 5 wt.% has been compared with the same blend without compatibilization. Mechanical, thermal, morphological, colorimetric, and wettability properties have been analyzed for each blend. The results showed that the compatibilizer improved the filler¿matrix interaction, increasing the ductile mechanical properties in terms of elongation and tensile strength. Regarding thermal properties, the compatibilizer increased thermal stability and improved the behavior of the materials against moisture. In general, the pinecone materials obtained exhibited reddish-brown colors, allowing their use as wood plastic composites with a wide range of properties depending on the filler content in the blend.Project with grant number PID2020-116496RB-C22 funded by the Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 and grant number AICO/2021/025 funded by Generalitat Valenciana.Morcillo, MDC.; Tejada, R.; Lascano-Aimacaña, DS.; Garcia-Garcia, D.; Garcia-Sanoguera, D. (2021). Manufacturing and Characterization of Environmentally Friendly Wood Plastic Composites Using Pinecone as a Filler into a Bio-Based High-Density Polyethylene Matrix. Polymers. 13(24):1-16. https://doi.org/10.3390/polym13244462S116132

    Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance

    Full text link
    [EN] This work reports the development and characterization of green composites based on polylactide (PLA) containing fillers and additives obtained from by-products or waste-streams from the linen processing industry. Flaxseed flour (FSF) was first produced by the mechanical milling of golden flaxseeds. The resultant FSF particles were melt-compounded at 30 wt% with PLA in a twin-screw extruder. Two multi-functionalized oils derived from linseed, namely epoxidized linseed oil (ELO) and maleinized linseed oil (MLO), were also incorporated during melt mixing at 2.5 and 5 parts per hundred resin (phr) of composite. The melt-compounded pellets were thereafter shaped into pieces by injection molding and characterized. Results showed that the addition of both multi-functionalized linseed oils successfully increased ductility, toughness, and thermal stability of the green composite pieces whereas water diffusion was reduced. The improvement achieved was related to both a plasticizing effect and, more interestingly, an enhancement of the interfacial adhesion between the biopolymer and the lignocellulosic particles by the reactive vegetable oils. The most optimal performance was attained for the MLO-containing green composite pieces, even at the lowest content, which was ascribed to the higher solubility of MLO with the PLA matrix. Therefore, the present study demonstrates the potential use of by-products or waste from flax (Linum usitatissimum L.) to obtain renewable raw materials of suitable quality to develop green composites with high performance for market applications such as rigid food packaging and food-contact disposable articles in the frame of the Circular Economy and Bioeconomy.This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R.Agüero, Á.; Lascano-Aimacaña, DS.; Garcia-Sanoguera, D.; Fenollar, O.; Torres Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability. 12(2):1-24. https://doi.org/10.3390/su12020652S124122Fritsch, C., Staebler, A., Happel, A., Cubero Márquez, M., Aguiló-Aguayo, I., Abadias, M., … Belotti, G. (2017). Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability, 9(8), 1492. doi:10.3390/su9081492Bajpai, P. K., Singh, I., & Madaan, J. (2012). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27(1), 52-81. doi:10.1177/0892705712439571Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363. doi:10.1002/(sici)1098-2329(199924)18:43.0.co;2-xNdazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042Singh, K. K., Mridula, D., Rehal, J., & Barnwal, P. (2011). Flaxseed: A Potential Source of Food, Feed and Fiber. Critical Reviews in Food Science and Nutrition, 51(3), 210-222. doi:10.1080/10408390903537241Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wJhala, A. J., Weselake, R. J., & Hall, L. M. (2009). Genetically Engineered Flax: Potential Benefits, Risks, Regulations, and Mitigation of Transgene Movement. Crop Science, 49(6), 1943-1954. doi:10.2135/cropsci2009.05.0251Crops http://www.fao.org/faostat/en/#data/QCKhot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., … Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703-723. doi:10.1002/app.1897Wool, R. P. (2005). POLYMERS AND COMPOSITE RESINS FROM PLANT OILS. Bio-Based Polymers and Composites, 56-113. doi:10.1016/b978-012763952-9/50005-8Samarth, N. B., & Mahanwar, P. A. (2015). Modified Vegetable Oil Based Additives as a Future Polymeric Material—Review. Open Journal of Organic Polymer Materials, 05(01), 1-22. doi:10.4236/ojopm.2015.51001Balanuca, B., Ghebaur, A., Stan, R., Vuluga, D. M., Vasile, E., & Iovu, H. (2018). New hybrid materials based on double-functionalized linseed oil and halloysite. Polymers for Advanced Technologies, 29(6), 1744-1752. doi:10.1002/pat.4279Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063Mahendran, A. R., Wuzella, G., Aust, N., Kandelbauer, A., & Müller, U. (2012). Photocrosslinkable modified vegetable oil based resin for wood surface coating application. Progress in Organic Coatings, 74(4), 697-704. doi:10.1016/j.porgcoat.2011.09.027Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Balart, J. F., Montanes, N., Fombuena, V., Boronat, T., & Sánchez-Nacher, L. (2017). Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour. Journal of Polymers and the Environment, 26(2), 701-715. doi:10.1007/s10924-017-0988-3Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. doi:10.1016/j.polymertesting.2019.01.017Torres-Giner, S., Chiva-Flor, A., & Feijoo, J. L. (2014). Injection-molded parts of polypropylene/multi-wall carbon nanotubes composites with an electrically conductive tridimensional network. Polymer Composites, 37(2), 488-496. doi:10.1002/pc.23204Keener, T. ., Stuart, R. ., & Brown, T. . (2004). Maleated coupling agents for natural fibre composites. Composites Part A: Applied Science and Manufacturing, 35(3), 357-362. doi:10.1016/j.compositesa.2003.09.014Yang, H.-S., Wolcott, M. P., Kim, H.-S., Kim, S., & Kim, H.-J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369-375. doi:10.1016/j.compstruct.2006.02.016Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779Shih, Y.-F., & Huang, C.-C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335-2340. doi:10.1007/s10965-011-9646-yHarmia, T., & Friedrich, K. (1995). Fracture toughness and failure mechanisms in unreinforced and long-glass-fibre-reinforced PA66/PP blends. Composites Science and Technology, 53(4), 423-430. doi:10.1016/0266-3538(95)00031-3Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J.-J. (2015). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry, 54(1), 11-33. doi:10.1002/pola.27917Tábi, T., Égerházi, A. Z., Tamás, P., Czigány, T., & Kovács, J. G. (2014). Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 64, 99-106. doi:10.1016/j.compositesa.2014.05.001Hindryckx, F., Dubois, P., Patin, M., Jérôme, R., Teyssié, P., & Marti, M. G. (1995). Interfacial adhesion in polyethylene–kaolin composites: Improvement by maleic anhydride-grafted polyethylene. Journal of Applied Polymer Science, 56(9), 1093-1105. doi:10.1002/app.1995.070560909Quiles-Carrillo, L., Boronat, T., Montanes, N., Balart, R., & Torres-Giner, S. (2019). Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing, 77, 105875. doi:10.1016/j.polymertesting.2019.04.022Rubilar, M., Gutiérrez, C., Verdugo, M., Shene, C., & Sineiro, J. (2010). FLAXSEED AS A SOURCE OF FUNCTIONAL INGREDIENTS. Journal of soil science and plant nutrition, 10(3). doi:10.4067/s0718-95162010000100010Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., … Chen, L. (2011). Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 106(1), 95-101. doi:10.1016/j.jfoodeng.2011.04.021Lourdin, D., Bizot, H., & Colonna, P. (1997). ?Antiplasticization? in starch-glycerol films? Journal of Applied Polymer Science, 63(8), 1047-1053. doi:10.1002/(sici)1097-4628(19970222)63:83.0.co;2-3Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Perinović, S., Andričić, B., & Erceg, M. (2010). Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 510(1-2), 97-102. doi:10.1016/j.tca.2010.07.002Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Engineering & Science, 48(3), 578-587. doi:10.1002/pen.20971Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M. A., Hassan, A., & Wahit, M. U. (2013). Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Materials & Design (1980-2015), 52, 841-848. doi:10.1016/j.matdes.2013.06.022Hristov, V., & Vasileva, S. (2003). Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 288(10), 798-806. doi:10.1002/mame.200300110Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 49(15), 1051-1083. doi:10.1002/polb.22283Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924MANSARAY, K. G., & GHALY, A. E. (1998). Thermogravimetric Analysis of Rice Husks in an Air Atmosphere. Energy Sources, 20(7), 653-663. doi:10.1080/00908319808970084Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. The Journal of Physical Chemistry A, 114(30), 7868-7876. doi:10.1021/jp103171hMelendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152Samal, S., Stuchlík, M., & Petrikova, I. (2017). Thermal behavior of flax and jute reinforced in matrix acrylic composite. Journal of Thermal Analysis and Calorimetry, 131(2), 1035-1040. doi:10.1007/s10973-017-6662-0Laaziz, S. A., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., & Qaiss, A. el kacem. (2017). Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules, 104, 30-42. doi:10.1016/j.ijbiomac.2017.05.184Gonzalez, L., Agüero, A., Quiles-Carrillo, L., Lascano, D., & Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 12(10), 1627. doi:10.3390/ma12101627Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200-6206. doi:10.1016/j.biortech.2010.02.070Tham, W. L., Ishak, Z. A. M., & Chow, W. S. (2014). Water Absorption and Hygrothermal Aging Behaviors of SEBS-g-MAH Toughened Poly(lactic acid)/Halloysite Nanocomposites. Polymer-Plastics Technology and Engineering, 53(5), 472-480. doi:10.1080/03602559.2013.845208Davis, E. M., Minelli, M., Baschetti, M. G., Sarti, G. C., & Elabd, Y. A. (2012). Nonequilibrium Sorption of Water in Polylactide. Macromolecules, 45(18), 7486-7494. doi:10.1021/ma301484uNing, J., Nguyen, V., Huang, Y., Hartwig, K. T., & Liang, S. Y. (2018). Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. The International Journal of Advanced Manufacturing Technology, 99(5-8), 1131-1140. doi:10.1007/s00170-018-2508-6Tanyildizi, H., & Şahin, M. (2015). Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature. Construction and Building Materials, 79, 97-103. doi:10.1016/j.conbuildmat.2015.01.03

    Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour

    Full text link
    [EN] Green composites of poly(butylene succinate) (PBS) were manufactured with almond shell flour (ASF) by reactive compatibilization with maleinized linseed oil *MLO) by extrusion and subsequent injection molding. ASF was kept constant at 30 wt %, while the effect of different MLO loading on mechanical, thermal, thermomechanical, and morphology properties was studied. Uncompatibilized PBS/ASF composites show a remarkable decrease in mechanical properties due to the nonexistent polymer¿filler interaction, as evidenced by field emission scanning electron microscopy (FESEM). MLO provides a plasticization effect on PBS/ASF composites but, in addition, acts as a compatibilizer agent since the maleic anhydride groups contained in MLO are likely to react with hydroxyl groups in both PBS end chains and ASF particles. This compatibilizing effect is observed by FESEM with a reduction of the gap between the filler particles and the surrounding PBS matrix. In addition, the Tg of PBS increases from ¿28 °C to ¿12 °C with an MLO content of 10 wt %, thus indicating compatibilization. MLO has been validated as an environmentally friendly additive to PBS/ASF composites to give materials with high environmental efficiency.This work was supported by the Ministry of Economy and Competitiveness (MINECO) grant number MAT2017-84909-C2-2-R. L.Q.-C. wants to thank Generalitat Valenciana (GV) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812).Limiñana-Gregori, P.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Balart, R.; Montanes, N. (2019). Optimization of Maleinized Linseed Oil Loading as a Biobased Compatibilizer in Poly(Butylene Succinate) Composites with Almond Shell Flour. Materials. 12(5):1-14. https://doi.org/10.3390/ma12050685S114125Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chemical Engineering & Technology, 31(5), 647-654. doi:10.1002/ceat.200800063McKinlay, J. B., Vieille, C., & Zeikus, J. G. (2007). Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, 76(4), 727-740. doi:10.1007/s00253-007-1057-yBozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014cKim, H.-S., Yang, H.-S., & Kim, H.-J. (2005). Biodegradability and mechanical properties of agro-flour-filled polybutylene succinate biocomposites. Journal of Applied Polymer Science, 97(4), 1513-1521. doi:10.1002/app.21905Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026Vytejčková, S., Vápenka, L., Hradecký, J., Dobiáš, J., Hajšlová, J., Loriot, C., … Poustka, J. (2017). Testing of polybutylene succinate based films for poultry meat packaging. Polymer Testing, 60, 357-364. doi:10.1016/j.polymertesting.2017.04.018Hongsriphan, N., & Sanga, S. (2017). Antibacterial food packaging sheets prepared by coating chitosan on corona-treated extruded poly(lactic acid)/poly(butylene succinate) blends. Journal of Plastic Film & Sheeting, 34(2), 160-178. doi:10.1177/8756087917722585Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. doi:10.1016/j.eurpolymj.2013.01.019Dorez, G., Taguet, A., Ferry, L., & Lopez-Cuesta, J. M. (2013). Thermal and fire behavior of natural fibers/PBS biocomposites. Polymer Degradation and Stability, 98(1), 87-95. doi:10.1016/j.polymdegradstab.2012.10.026Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160-169. doi:10.1016/j.indcrop.2012.12.013Kurokawa, N., Kimura, S., & Hotta, A. (2017). Mechanical properties of poly(butylene succinate) composites with aligned cellulose‐acetate nanofibers. Journal of Applied Polymer Science, 135(24), 45429. doi:10.1002/app.45429Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Athanassiadou, E., Reinders, M., & Bikiaris, D. N. (2014). Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polymer Composites, 37(2), 407-421. doi:10.1002/pc.23194Lee, H. Y., & Cho, D. (2017). Influence of Waste Fiber Content on the Thermal and Mechanical Properties of Waste Silk/Waste Wool/PBS Hybrid Biocomposites. Polymer Korea, 41(4), 719-726. doi:10.7317/pk.2017.41.4.719Flores-Cano, J. V., Sánchez-Polo, M., Messoud, J., Velo-Gala, I., Ocampo-Pérez, R., & Rivera-Utrilla, J. (2016). Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. Journal of Environmental Management, 169, 116-125. doi:10.1016/j.jenvman.2015.12.001Loffredo, E., Castellana, G., & Senesi, N. (2013). Decontamination of a municipal landfill leachate from endocrine disruptors using a combined sorption/bioremoval approach. Environmental Science and Pollution Research, 21(4), 2654-2662. doi:10.1007/s11356-013-2202-zLoffredo, E., Castellana, G., & Taskin, E. (2016). A Two-Step Approach to Eliminate Pesticides and Estrogens from a Wastewater and Reduce Its Phytotoxicity: Adsorption onto Plant-Derived Materials and Fungal Degradation. Water, Air, & Soil Pollution, 227(6). doi:10.1007/s11270-016-2883-2Adánez-Rubio, I., Pérez-Astray, A., Mendiara, T., Izquierdo, M. T., Abad, A., Gayán, P., … Adánez, J. (2018). Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide. Fuel Processing Technology, 172, 179-186. doi:10.1016/j.fuproc.2017.12.010Cerone, N., & Zimbardi, F. (2018). Gasification of Agroresidues for Syngas Production. Energies, 11(5), 1280. doi:10.3390/en11051280Safari, F., Javani, N., & Yumurtaci, Z. (2018). Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. International Journal of Hydrogen Energy, 43(2), 1071-1080. doi:10.1016/j.ijhydene.2017.05.102Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230. doi:10.1016/j.matdes.2013.04.031El Mechtali, F. Z., Essabir, H., Nekhlaoui, S., Bensalah, M. O., Jawaid, M., Bouhfid, R., & Qaiss, A. (2015). Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 12(3), 483-494. doi:10.1016/s1672-6529(14)60139-6Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Caballero, J. A., Conesa, J. A., Font, R., & Marcilla, A. (1997). Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. Journal of Analytical and Applied Pyrolysis, 42(2), 159-175. doi:10.1016/s0165-2370(97)00015-6Faludi, G., Dora, G., Imre, B., Renner, K., Móczó, J., & Pukánszky, B. (2013). PLA/lignocellulosic fiber composites: Particle characteristics, interfacial adhesion, and failure mechanism. Journal of Applied Polymer Science, 131(4), n/a-n/a. doi:10.1002/app.39902García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053Wang, F., Yang, M., Zhou, S., Ran, S., & Zhang, J. (2017). Effect of fiber volume fraction on the thermal and mechanical behavior of polylactide-based composites incorporating bamboo fibers. Journal of Applied Polymer Science, 135(15), 46148. doi:10.1002/app.46148Nam, T. H., Ogihara, S., Tung, N. H., & Kobayashi, S. (2011). Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites Part B: Engineering, 42(6), 1648-1656. doi:10.1016/j.compositesb.2011.04.001Sinha, A. K., Narang, H. K., & Bhattacharya, S. (2017). Mechanical properties of natural fibre polymer composites. Journal of Polymer Engineering, 37(9), 879-895. doi:10.1515/polyeng-2016-0362Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063Karmarkar, A., Chauhan, S. S., Modak, J. M., & Chanda, M. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Composites Part A: Applied Science and Manufacturing, 38(2), 227-233. doi:10.1016/j.compositesa.2006.05.005Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330Samper, M. D., Petrucci, R., Sanchez-Nacher, L., Balart, R., & Kenny, J. M. (2015). Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Materials & Design, 72, 9-15. doi:10.1016/j.matdes.2015.02.002Zhao, Y., Qu, J., Feng, Y., Wu, Z., Chen, F., & Tang, H. (2011). Mechanical and thermal properties of epoxidized soybean oil plasticized polybutylene succinate blends. Polymers for Advanced Technologies, 23(3), 632-638. doi:10.1002/pat.1937Sarwono, A., Man, Z., & Bustam, M. A. (2012). Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. Journal of Polymers and the Environment, 20(2), 540-549. doi:10.1007/s10924-012-0418-5Park, S.-J., Jin, F.-L., & Lee, J.-R. (2004). Effect of Biodegradable Epoxidized Castor Oil on Physicochemical and Mechanical Properties of Epoxy Resins. Macromolecular Chemistry and Physics, 205(15), 2048-2054. doi:10.1002/macp.200400214Huang, K., Zhang, P., Zhang, J., Li, S., Li, M., Xia, J., & Zhou, Y. (2013). Preparation of biobased epoxies using tung oil fatty acid-derived C21 diacid and C22 triacid and study of epoxy properties. Green Chemistry, 15(9), 2466. doi:10.1039/c3gc40622aFerri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Garcia-Campo, M., Quiles-Carrillo, L., Masia, J., Reig-Pérez, M., Montanes, N., & Balart, R. (2017). Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials, 10(11), 1339. doi:10.3390/ma10111339Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Ren, M., Song, J., Song, C., Zhang, H., Sun, X., Chen, Q., … Mo, Z. (2005). Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241. doi:10.1002/polb.20539Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329Ernzen, J. R., Bondan, F., Luvison, C., Henrique Wanke, C., De Nardi Martins, J., Fiorio, R., & Bianchi, O. (2015). Structure and properties relationship of melt reacted polyamide 6/malenized soybean oil. Journal of Applied Polymer Science, 133(8), n/a-n/a. doi:10.1002/app.43050Yokohara, T., & Yamaguchi, M. (2008). Structure and properties for biomass-based polyester blends of PLA and PBS. European Polymer Journal, 44(3), 677-685. doi:10.1016/j.eurpolymj.2008.01.008Luo, X., Li, J., Feng, J., Yang, T., & Lin, X. (2014). Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials & Design, 57, 195-200. doi:10.1016/j.matdes.2013.12.056Bendahou, A., Kaddami, H., Sautereau, H., Raihane, M., Erchiqui, F., & Dufresne, A. (2008). Short Palm Tree Fibers Polyolefin Composites: Effect of Filler Content and Coupling Agent on Physical Properties. Macromolecular Materials and Engineering, 293(2), 140-148. doi:10.1002/mame.200700315Li, J., Luo, X., & Lin, X. (2013). Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites. Materials & Design, 46, 902-909. doi:10.1016/j.matdes.2012.11.054Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., & Maspoch, M. L. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 32(5), 937-945. doi:10.1016/j.polymertesting.2013.04.013Shih, Y.-F. (2009). Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 47(13), 1231-1239. doi:10.1002/polb.21728Faulstich de Paiva, J. M., & Frollini, E. (2006). Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 291(4), 405-417. doi:10.1002/mame.200500334Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Nabinejad, O., Sujan, D., Rahman, M. E., & Davies, I. J. (2015). Determination of filler content for natural filler polymer composite by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 122(1), 227-233. doi:10.1007/s10973-015-4681-2Kim, H.-S., Kim, S., Kim, H.-J., & Yang, H.-S. (2006). Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta, 451(1-2), 181-188. doi:10.1016/j.tca.2006.09.013Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153. doi:10.1016/j.biortech.2011.11.122Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565. doi:10.1016/j.compscitech.2007.05.044Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2013). Generalized master plots as a straightforward approach for determining the kinetic model: The case of cellulose pyrolysis. Thermochimica Acta, 552, 54-59. doi:10.1016/j.tca.2012.11.003Carrasco, F., Cailloux, J., Sánchez-Jiménez, P. E., & Maspoch, M. L. (2014). Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polymer Degradation and Stability, 104, 40-49. doi:10.1016/j.polymdegradstab.2014.03.026Jin, H.-J., Lee, B.-Y., Kim, M.-N., & Yoon, J.-S. (2000). Properties and biodegradation of poly(ethylene adipate) and poly(butylene succinate) containing styrene glycol units. European Polymer Journal, 36(12), 2693-2698. doi:10.1016/s0014-3057(00)00057-4Sahoo, S., Misra, M., & Mohanty, A. K. (2012). Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites. Journal of Applied Polymer Science, 127(5), 4110-4121. doi:10.1002/app.3766

    Manufacturing and Characterization of Hybrid Composites with Basalt and Flax Fabrics and a Partially Bio-based Epoxy Resin

    Full text link
    [EN] This research is focused on manufacturing and characterization of hybrid composite laminates obtained different stacking sequences of basalt and flax fabrics with silane treatments embedded in a partially bio-sourced epoxy resin as matrix. They were manufactured by the vacuum-assisted resin infusion molding and mechanical properties were tested in tensile, flexural and impact conditions. The effect of the coupling agent on the fiber/matrix interface was studied by FESEM. The effect of temperature on mechanical properties was evaluated by DMTA and TMA. FESEM images revealed improved fiber/matrix interactions with silane treatment, having a more satisfactory effect on basalt fibers than on flax fibers because of its silica-based structure, leading to improved mechanical properties. It is worthy to note that the hybrid stacking sequence has no remarkable influence on the elongation at break. On the contrary, the hybrid stacking sequence offered a great influence on both the elastic modulus and the tensile strength.This research was funded by the Ministerio de Economía, Industria y Competitividad (MICINN) project number MAT2017-84909-C2-2-R. D. Lascano wants to thank UPV for the grant received though the PAID-01-18 program. Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images.Lascano-Aimacaña, DS.; Balart, R.; Garcia-Sanoguera, D.; Agüero-Rodríguez, Á.; Boronat, T.; Montanes, N. (2021). Manufacturing and Characterization of Hybrid Composites with Basalt and Flax Fabrics and a Partially Bio-based Epoxy Resin. Fibers and Polymers. 22(3):751-763. https://doi.org/10.1007/s12221-021-0209-5S751763223S. Yang, V. B. Chalivendra, and Y. K. Kim, Compos. Struct., 168, 120 (2017).R. Rahman and S. Z. F. S. Putra, “Tensile Properties of Natural and Synthetic Fiber-reinforced Polymer Composites”, pp.81–102, Elsevier Ltd., United Kingdom, 2019.B. Song, T. Wang, L. Wang, H. Liu, X. Mai, X. Wang, N. Wang, Y. Huang, Y. Ma, Y. Lu, E. K. Wujcik, and Z. Guo, Compos. Part B-Eng., 158, 259 (2019).C. Soutis, Prog. Aeronaut. Sci., 41, 143 (2005).R. A. Sullivan, JOM, 58, 77 (2006).E. Monaldo, F. Nerilli, and G. Vairo, Compos. Struct., 214, 246 (2019).J. Yin and Z. S. Wu, Constr. Build. Master., 17, 463 (2003).D. Church, Reinforced Plastics, 62, 35 (2018).S. E. Artemenko and Y. A. Kadykova, Fibre Chem., 40, 37 (2008).G. Marom, E. Drukker, A. Weinberg, and J. Banbaji, Composites, 17, 150 (1986).A.-C. Corbin, D. Soulat, M. Ferreira, A.-R. Labanieh, X. Gabrion, P. Malécot, and V. Placet, Compos. Part B-Eng., 181, 107582 (2020).O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).S. Shahinur and M. Hasan, “Natural Fiber and Synthetic Fiber Composites: Comparison of Properties, Performance, Cost and Environmental Benefits”, Vol.2, p.794, Elsevier Ltd., 2020.M. Ramesh, Prog. Mater. Sci., 102, 109 (2019).Y. Zhang, Y. Li, H. Ma, and T. Yu, Compos. Sci. Technol., 88, 172 (2013).S. S. Morye and R. P. Wool, Polym. Compos., 26, 407 (2005).M. Ramesh, C. Deepa, G. Arpitha, and V. Gopinath, World J. Eng., 16, 248 (2019).P. K. Bajpai, K. Ram, L. K. Gahlot, and V. K. Jha, Mater. Today: Proc., 5, 8699 (2018).K. Palanikumar, M. Ramesh, and K. Hemachandra Reddy, J. Nat. Fibers, 13, 321 (2016).V. Fiore, T. Scalici, G. Di Bella, and A. Valenza, Compos. Part B-Eng., 74, 74 (2015).T. Czigány, J. Vad, and K. Pölöskei, Period. Polytech., Mech. Eng., 49, 3 (2005).T. Deák and T. Czigány, Text. Res. J., 79, 645 (2009).M. Birkner, S. Spange, and K. Koschek, Polym. Compos., 40, 3115 (2019).J. J. Lee, J. Song, and H. Kim, Fiber. Polym., 15, 2329 (2014).M. Tehrani Dehkordi, H. Nosraty, M. M. Shokrieh, G. Minak, and D. Ghelli, Mater. Des., 43, 283 (2013).D. Matykiewicz, M. Barczewski, D. Knapski, and K. Skórczewska, Compos. Part B-Eng., 125, 157 (2017).D. Matykiewicz and M. Barczewski, Compos. Commun., 20, 100360 (2020).C. Sergi, J. Tirillò, M. C. Seghini, F. Sarasini, V. Fiore, and T. Scalici, Polymers, 11, 603 (2019).M. D. Samper, R. Petrucci, L. Sánchez-Nacher, R. Balart, and J. M. Kenny, Polym. Compos., 36, 1205 (2015).B. V. Ramnath, C. Elanchezhian, P. V. Nirmal, G. P. Kumar, V. S. Kumar, S. Karthick, S. Rajesh, and K. Suresh, Fiber. Polym., 15, 1251 (2014).J. Yang, J. Xiao, J. Zeng, L. Bian, C. Peng, and F. Yang, Fiber. Polym., 14, 759 (2013).Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, Compos. Part A-Appl. Sci. Manuf., 41, 806 (2010).H. A. Al-Qureshi, J. Mater. Process. Technol., 118, 58 (2001).H. Kishi, A. Fujita, H. Miyazaki, S. Matsuda, and A. Murakami, J. Appl. Polym. Sci., 102, 2285 (2006).W. Riemenschneider and H. M. Bolt, Ullmann’s Encycl. Ind. Chem., 12, 245 (2005).F. L. Jin, X. Li, and S. J. Park, J. Ind. Eng. Chem., 29, 1 (2015).B. Ferrero, V. Fombuena, O. Fenollar, T. Boronat, and R. Balart, Polym. Compos., 36, 1378 (2015).T. Boronat, V. Fombuena, D. Garcia-Sanoguera, L. Sanchez-Nacher, and R. Balart, Mater. Des., 68, 177 (2015).A. Carbonell-Verdu, L. Bernardi, D. Garcia-Garcia, L. Sanchez-Nacher, and R. Balart, Eur. Polym. J., 63, 1 (2015).S. Torres-Giner, N. Montanes, O. Fenollar, D. García-Sanoguera, and R. Balart, Mater. Des., 108, 648 (2016).D. Lascano, J. Valcárcel, R. Balart, L. Quiles-Carrillo, and T. Boronat, Ingenius, 23, 62 (2020).J. M. Park, W. G. Shin, and D. J. Yoon, Compos. Sci. Technol., 59, 355 (1999).J. Cruz and R. Fangueiro, Procedia Eng., 155, 285 (2016).H. Luo, G. Xiong, C. Ma, P. Chang, F. Yao, Y. Zhu, C. Zhang, and Y. Wan, Polym. Test., 39, 45 (2014).M. Sood and G. Dwivedi, Egypt. J. Pet., 27, 775 (2018).M. D. Samper, R. Petrucci, L. Sánchez-Nacher, R. Balart, and J. M. Kenny, Compos. Part B-Eng., 71, 203 (2015).R. Petrucci, C. Santulli, D. Puglia, E. Nisini, F. Sarasini, J. Tirillò, L. Torre, G. Minak, and J. M. Kenny, Compos. Part B-Eng., 69, 507 (2015).R. Petrucci, C. Santulli, D. Puglia, F. Sarasini, L. Torre, and J. M. Kenny, Mater. Des., 49, 728 (2013).R. Park and J. Jang, J. Mater. Sci., 34, 2903 (1999).L. V. J. Lassila, T. Nohrström, and P. K. Vallittu, Biomaterials, 23, 2221 (2002).F. Rezaei, R. Yunus, N. A. Ibrahim, and E. S. Mahdi, Polym.-Plast. Technol. Eng., 47, 351 (2008).D. Lascano, L. Quiles-Carrillo, R. Balart, T. Boronat, and N. Montanes, Materials, 12, 622 (2019).D. Garcia-Garcia, J. M. Ferri, T. Boronat, J. Lopez-Martinez, and R. Balart, Polym. Bull., 73, 3333 (2016).M. Evstatiev, S. Fakirov, B. Krasteva, K. Friedrich, J. A. Covas, and A. M. Cunha, Polym. Eng. Sci., 42, 826 (2002).I. D. G. Ary Subagia, Y. Kim, L. D. Tijing, C. S. Kim, and H. K. Shon, Compos. Part B-Eng., 58, 251 (2014).J. Zhang, K. Chaisombat, S. He, and C. H. Wang, Mater. Des., 36, 75 (2012).J. M. España, M. D. Samper, E. Fages, L. Sánchez-Nácher, and R. Balart, Polym. Compos., 34, 376 (2013).D. Bertomeu, D. García-Sanoguera, O. Fenollar, T. Boronat, and R. Balart, Polym. Compos., 33, 683 (2012).J. Militký, V. Kovačič, and J. Rubnerová, Eng. Fract. Mech., 69, 1025 (2002).P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).V. Fiore, G. Di Bella, and A. Valenza, Mater. Des., 32, 2091 (2011).G. Romhány, J. Karger-Kocsis, and T. Czigány, J. Appl. Polym. Sci., 90, 3638 (2003).M. S. M. Jusoh, C. Santulli, M. Y. M. Yahya, N. Hussein, and H. A. I. Ahmad, Mater. Sci. Eng. Adv. Res., 1, 19 (2016).B. H. Jones, D. R. Wheeler, H. T. Black, M. E. Stavig, P. S. Sawyer, N. H. Giron, M. C. Celina, T. N. Lambert, and T. M. Alam, Macromolecules, 50, 5014 (2017).R. A. Pethrick, E. A. Hollins, I. McEwan, E. A. Pollock, D. Hayward, and P. Johncock, Polym. Int., 39, 275 (1996).V. B. Gupta, J. Rich, L. T. Drazal, and C. Y. C. Lee, Polym. Eng. Sci., 25, 13 (1985).P. Czub, Macromol. Symp., 242, 60 (2006).R. J. Varley, W. Tian, K. H. Leong, A. Y. Leong, F. Fredo, and M. Quaresimin, Polym. Compos., 34, 320 (2013).V. B. Gupta and C. Brahatheeswaran, Polymer, 32, 1875 (1991)

    Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry

    Full text link
    [EN] This work presents an in-depth kinetic study of the thermal degradation of recycled acrylonitrile-butadiene-styrene (ABS) polymer. Non-isothermal thermogravimetric analysis (TGA) data in nitrogen atmosphere at different heating rates comprised between 2 and 30 K min¿1 were used to obtain the apparent activation energy (Ea) of the thermal degradation process of ABS by isoconversional (differential and integral) model-free methods. Among others, the differential Friedman method was used. Regarding integral methods, several methods with different approximations of the temperature integral were used, which gave different accuracies in Ea. In particular, the Flynn-Wall-Ozawa (FWO), the Kissinger-Akahira-Sunose (KAS), and the Starink methods were used. The results obtained by these methods were compared to the Kissinger method based on peak temperature (Tm) measurements at the maximum degradation rate. Combined Kinetic Analysis (CKA) was also carried out by using a modified expression derived from the general Sestak-Berggren equation with excellent results compared with the previous methods. Isoconversional methods revealed negligible variation of Ea with the conversion. Furthermore, the reaction model was assessed by calculating the characteristic "y(¿)" and "z(¿)" functions and comparing them with some master plots, resulting in a nth order reaction model with n = 1.4950, which allowed calculating the pre-exponential factor (A) of the Arrhenius constant. The results showed that Ea of the thermal degradation of ABS was 163.3 kJ mol¿1, while ln A was 27.5410 (A in min¿1). The predicted values obtained by integration of the general kinetic expression with the calculated kinetic triplet were in full agreement with the experimental data, thus giving evidence of the accuracy of the obtained kinetic parameters.This research was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) program numbers MAT2017-84909-C2-2-R. L.Q.-C. wants to thank the Generalitat Valenciana (GVA) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812), while S.T.-G. is a recipient of a Juan de la Cierva - Incorporacion contract (IJCI-2016-29675) from MINECO.Balart, R.; Garcia-Sanoguera, D.; Quiles-Carrillo, L.; Montanes, N.; Torres-Giner, S. (2019). Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry. Polymers. 11(2). https://doi.org/10.3390/polym11020281S112Scaffaro, R., Botta, L., & Di Benedetto, G. (2012). Physical properties of virgin-recycled ABS blends: Effect of post-consumer content and of reprocessing cycles. European Polymer Journal, 48(3), 637-648. doi:10.1016/j.eurpolymj.2011.12.018Tiganis, B. ., Burn, L. ., Davis, P., & Hill, A. . (2002). Thermal degradation of acrylonitrile–butadiene–styrene (ABS) blends. Polymer Degradation and Stability, 76(3), 425-434. doi:10.1016/s0141-3910(02)00045-9Niemczyk, A., Dziubek, K., Sacher-Majewska, B., Czaja, K., Czech-Polak, J., Oliwa, R., … Szołyga, M. (2018). Thermal Stability and Flame Retardancy of Polypropylene Composites Containing Siloxane-Silsesquioxane Resins. Polymers, 10(9), 1019. doi:10.3390/polym10091019Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2013). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. doi:10.3390/polym6010093Zhang, X., Wu, Y., Chen, X., Wen, H., & Xiao, S. (2017). Theoretical Study on Decomposition Mechanism of Insulating Epoxy Resin Cured by Anhydride. Polymers, 9(12), 341. doi:10.3390/polym9080341Ramesh, V., Biswal, M., Mohanty, S., & Nayak, S. K. (2014). Compatibilization effect of EVA-g-MAH on mechanical, morphological and rheological properties of recycled PC/ABS blend. Materials Express, 4(6), 499-507. doi:10.1166/mex.2014.1198Kuram, E., Ozcelik, B., Yilmaz, F., Timur, G., & Sahin, Z. M. (2014). The effect of recycling number on the mechanical, chemical, thermal, and rheological properties of PBT/PC/ABS ternary blends: With and without glass-fiber. Polymer Composites, 35(10), 2074-2084. doi:10.1002/pc.22869Balart, R., López, J., García, D., & Dolores Salvador, M. (2005). Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. European Polymer Journal, 41(9), 2150-2160. doi:10.1016/j.eurpolymj.2005.04.001Khatri, B., Lappe, K., Habedank, M., Mueller, T., Megnin, C., & Hanemann, T. (2018). Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices. Polymers, 10(6), 666. doi:10.3390/polym10060666Hart, K. R., & Wetzel, E. D. (2017). Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Engineering Fracture Mechanics, 177, 1-13. doi:10.1016/j.engfracmech.2017.03.028Ramirez, N. V., & Sanchez-Soto, M. (2012). Effects of poss nanoparticles on ABS-g -Ma thermo oxidation resistance. Polymer Composites, 33(10), 1707-1718. doi:10.1002/pc.22304Duh, Y.-S., Ho, T.-C., Chen, J.-R., & Kao, C.-S. (2010). Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS) Resin Powder with Application to ABS Processing Safety. Polymers, 2(3), 174-187. doi:10.3390/polym2030174Polli, H., Pontes, L. A. M., Araujo, A. S., Barros, J. M. F., & Fernandes, V. J. (2009). Degradation behavior and kinetic study of ABS polymer. Journal of Thermal Analysis and Calorimetry, 95(1), 131-134. doi:10.1007/s10973-006-7781-1Suzuki, M., & Wilkie, C. A. (1995). The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polymer Degradation and Stability, 47(2), 217-221. doi:10.1016/0141-3910(94)00122-oSánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polymer Degradation and Stability, 95(5), 733-739. doi:10.1016/j.polymdegradstab.2010.02.017Perejón, A., Sánchez-Jiménez, P. E., Gil-González, E., Pérez-Maqueda, L. A., & Criado, J. M. (2013). Pyrolysis kinetics of ethylene–propylene (EPM) and ethylene–propylene–diene (EPDM). Polymer Degradation and Stability, 98(9), 1571-1577. doi:10.1016/j.polymdegradstab.2013.06.029Carrasco, F., Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., Santana, O. O., & Maspoch, M. L. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 32(5), 937-945. doi:10.1016/j.polymertesting.2013.04.013Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Perejón, A., García-Garrido, C., Criado, J. M., & Benítez-Guerrero, M. (2014). Scission kinetic model for the prediction of polymer pyrolysis curves from chain structure. Polymer Testing, 37, 1-5. doi:10.1016/j.polymertesting.2014.04.004Di Cortemiglia, M. P. L., Camino, G., Costa, L., & Guaita, M. (1985). Thermal degradation of ABS. Thermochimica Acta, 93, 187-190. doi:10.1016/0040-6031(85)85048-6Day, M., Cooney, J. D., & MacKinnon, M. (1995). Degradation of contaminated plastics: a kinetic study. Polymer Degradation and Stability, 48(3), 341-349. doi:10.1016/0141-3910(95)00088-4Balart, R., Sánchez, L., López, J., & Jiménez, A. (2006). Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrile–butadiene–styrene mixtures from waste electric and electronic equipment. Polymer Degradation and Stability, 91(3), 527-534. doi:10.1016/j.polymdegradstab.2005.01.055Stanko, M., & Stommel, M. (2018). Kinetic Prediction of Fast Curing Polyurethane Resins by Model-Free Isoconversional Methods. Polymers, 10(7), 698. doi:10.3390/polym10070698Starink, M. . (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica Acta, 404(1-2), 163-176. doi:10.1016/s0040-6031(03)00144-8Lyon, R. E. (1997). An integral method of nonisothermal kinetic analysis. Thermochimica Acta, 297(1-2), 117-124. doi:10.1016/s0040-6031(97)00158-5Shao, J., Wang, J., Long, M., Li, J., & Ma, Y. (2017). 5000 h Multi-Factor Accelerated Aging Test of FRP Made Transmission Tower: Characterization, Thermal Decomposition and Reaction Kinetics Study. Polymers, 9(12), 170. doi:10.3390/polym9050170Doyle, C. D. (1961). Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5(15), 285-292. doi:10.1002/app.1961.070051506Doyle, C. D. (1962). Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science, 6(24), 639-642. doi:10.1002/app.1962.070062406Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. doi:10.1002/pol.1966.110040504Ozawa, T. (1965). A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. doi:10.1246/bcsj.38.1881Zhao, S. F., Zhang, G. P., Sun, R., & Wong, C. P. (2014). Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems. Express Polymer Letters, 8(2), 95-106. doi:10.3144/expresspolymlett.2014.12Kissinger, H. E. (1957). Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29(11), 1702-1706. doi:10.1021/ac60131a045Pérez-Maqueda, L. A., Criado, J. M., & Sánchez-Jiménez, P. E. (2006). Combined Kinetic Analysis of Solid-State Reactions:  A Powerful Tool for the Simultaneous Determination of Kinetic Parameters and the Kinetic Model without Previous Assumptions on the Reaction Mechanism. The Journal of Physical Chemistry A, 110(45), 12456-12462. doi:10.1021/jp064792gŠesták, J., & Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta, 3(1), 1-12. doi:10.1016/0040-6031(71)85051-7Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2009). Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polymer Degradation and Stability, 94(11), 2079-2085. doi:10.1016/j.polymdegradstab.2009.07.006Senum, G. I., & Yang, R. T. (1977). Rational approximations of the integral of the Arrhenius function. Journal of Thermal Analysis, 11(3), 445-447. doi:10.1007/bf01903696Pérez-Maqueda, L. A., & Criado, J. M. (2000). Journal of Thermal Analysis and Calorimetry, 60(3), 909-915. doi:10.1023/a:1010115926340Flynn, J. H. (1997). The ‘Temperature Integral’ — Its use and abuse. Thermochimica Acta, 300(1-2), 83-92. doi:10.1016/s0040-6031(97)00046-4Mianowski, A. (2003). The kissinger law and isokinetic effect. Journal of Thermal Analysis and Calorimetry, 74(3), 953-973. doi:10.1023/b:jtan.0000011027.59338.54Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1-2), 1-19. doi:10.1016/j.tca.2011.03.034Criado, J. M., & Ortega, A. (1987). Non-isothermal crystallization kinetics of metal glasses: simultaneous determination of both the activation energy and the exponent n of the JMA kinetic law. Acta Metallurgica, 35(7), 1715-1721. doi:10.1016/0001-6160(87)90117-9Criado, J. M., & Ortega, A. (1986). Non-isothermal transformation kinetics: Remarks on the Kissinger method. Journal of Non-Crystalline Solids, 87(3), 302-311. doi:10.1016/s0022-3093(86)80004-7Farjas, J., Butchosa, N., & Roura, P. (2010). A simple kinetic method for the determination of the reaction model from non-isothermal experiments. Journal of Thermal Analysis and Calorimetry, 102(2), 615-625. doi:10.1007/s10973-010-0737-5Mamleev, V., Bourbigot, S., Le Bras, M., & Lefebvre, J. (2004). Three model-free methods for calculation of activation energy in TG. Journal of Thermal Analysis and Calorimetry, 78(3), 1009-1027. doi:10.1007/s10973-005-0467-0Nikolaidis, A., & Achilias, D. (2018). Thermal Degradation Kinetics and Viscoelastic Behavior of Poly(Methyl Methacrylate)/Organomodified Montmorillonite Nanocomposites Prepared via In Situ Bulk Radical Polymerization. Polymers, 10(5), 491. doi:10.3390/polym10050491Flynn, J. H. (1991). A general differential technique for the determination of parameters for d(α)/dt=f(α)A exp (−E/RT). Journal of Thermal Analysis, 37(2), 293-305. doi:10.1007/bf02055932Sbirrazzuoli, N., Vincent, L., Mija, A., & Guigo, N. (2009). Integral, differential and advanced isoconversional methods. Chemometrics and Intelligent Laboratory Systems, 96(2), 219-226. doi:10.1016/j.chemolab.2009.02.002Flynn, J. H. (1983). The isoconversional method for determination of energy of activation at constant heating rates. Journal of Thermal Analysis, 27(1), 95-102. doi:10.1007/bf01907325Venkatesh, M., Ravi, P., & Tewari, S. P. (2013). Isoconversional Kinetic Analysis of Decomposition of Nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa Method. The Journal of Physical Chemistry A, 117(40), 10162-10169. doi:10.1021/jp407526rHuang, F.-Y. (2012). Thermal Properties and Thermal Degradation of Cellulose Tri-Stearate (CTs). Polymers, 4(2), 1012-1024. doi:10.3390/polym4021012Pérez-Maqueda, L. A., Criado, J. M., Gotor, F. J., & Málek, J. (2002). Advantages of Combined Kinetic Analysis of Experimental Data Obtained under Any Heating Profile. The Journal of Physical Chemistry A, 106(12), 2862-2868. doi:10.1021/jp012246bGarcía-Garrido, C., Pérez- Maqueda, L. A., Criado, J. M., & Sánchez-Jiménez, P. E. (2018). Combined kinetic analysis of multistep processes of thermal decomposition of polydimethylsiloxane silicone. Polymer, 153, 558-564. doi:10.1016/j.polymer.2018.08.045Yan, Q.-L., Zeman, S., Sánchez Jiménez, P. E., Zhao, F.-Q., Pérez-Maqueda, L. A., & Málek, J. (2014). The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. Journal of Hazardous Materials, 271, 185-195. doi:10.1016/j.jhazmat.2014.02.019Yahyaoui, R., Jimenez, P. E. S., Maqueda, L. A. P., Nahdi, K., & Luque, J. M. C. (2018). Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2(OH)16CO3·4H2O). Thermochimica Acta, 667, 177-184. doi:10.1016/j.tca.2018.07.025Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2011). Constant rate thermal analysis for thermal stability studies of polymers. Polymer Degradation and Stability, 96(5), 974-981. doi:10.1016/j.polymdegradstab.2011.01.027Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. The Journal of Physical Chemistry A, 114(30), 7868-7876. doi:10.1021/jp103171hMálek, J., Koga, N., Pérez-Maqueda, L. A., & Criado, J. M. (2013). The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. Journal of Thermal Analysis and Calorimetry, 113(3), 1437-1446. doi:10.1007/s10973-013-2939-0Pérez-Maqueda, L. A., Ortega, A., & Criado, J. M. (1996). The use of master plots for discriminating the kinetic model of solid state reactions from a single constant-rate thermal analysis (CRTA) experiment. Thermochimica Acta, 277, 165-173. doi:10.1016/0040-6031(95)02746-

    Utilización de plataformas multimedia para la docencia no presencial en el campo de las ingenierías

    Full text link
    [ES] En los últimos años, se ha producido un incremento importante en la demanda de formación no presencial. La Universidad Politécnica de Valencia, consciente de este nuevo marco docente, ha realizado un gran esfuerzo en el desarrollo de nuevas plataformas multimedia que permitan desarrollar el proceso de enseñanza-aprendizaje no presencial en el campo de las ingenierías, con un óptimo rendimiento. Una de las plataformas que ofrece en este atractivo proyecto, es la herramienta Polimedia, que consiste en una extensa base de videos en los que una presentación y una grabación del docente, se sincronizan para llevar a cabo la explicación de conceptos individuales relacionados con algún aspecto de la ingeniería (son los denominados Objetos de Aprendizaje). Esta herramienta es de gran utilidad para la docencia no presencial, al igual que el portal de Open Course Ware de la UPV donde se ofrece material de libre acceso relacionado con diversas asignaturas en el campo de la ingeniería. Este material de acceso libre contiene información necesaria para realizar un seguimiento de la asignatura (sesiones teóricas, material de apoyo, sesiones prácticas,¿) en situaciones no presenciales. Ambas herramientas ofrecen una serie de plataformas de gran interés para la docencia en ingeniería.Balart, R.; Garcia-Sanoguera, D.; Fenollar, O.; Boronat, T.; Sanchez-Nacher, L. (2011). Utilización de plataformas multimedia para la docencia no presencial en el campo de las ingenierías. Instituto de Ciencias de la Educación de la Universidad de Alicante. 1-8. http://hdl.handle.net/10251/178220S1

    Aplicación docente para el cálculo de sistemas de alimentación de fundición. Fundisa 1.0

    Full text link
    [ES] Se ha desarrollado una herramienta informática que permite a los estudiantes de ingeniería el cálculo de sistemas de alimentación del fundición. Esta herramienta permite a los estudiantes comprobar y comparar rápidamente los resultados de fabricación en diversos escenarios. Esto permite reducir de manera significativa el tiempo de estudio, lo que mejora el aprendizaje. Los programas informáticos disponibles para el cálculo de los sistemas de alimentación de fundición no son útiles en un ambiente académico porque no están diseñados para la enseñanza y que se caracterizan por su alto costo económico y alta complejidad. La aplicación Fundisa 1.0 ha sido desarrollada utilizando Visual Basic. La aplicación incluye todas las variantes de sistemas de alimentación, dividido en diferentes secciones. Además de facilitar el proceso de enseñanza-aprendizaje de la aplicación tiene una ayuda completa a fin de que este programa sea un instrumento útil, versátil y fácil de utilizar por los estudiantes. Hoy en día los estudiantes de estudios técnicos valoran altamente el uso de herramientas que les da autonomía en su proceso educativo, que se adapte al ritmo de aprendizaje particular de cada estudiante, y además el uso de herramientas informáticas les proporciona, una mayor motivación para aumentar el conocimiento de la materia.Boronat, T.; Garcia-Sanoguera, D.; Fenollar, O.; Balart, R.; Sanchez-Nacher, L. (2011). Aplicación docente para el cálculo de sistemas de alimentación de fundición. Fundisa 1.0. Instituto de Ciencias de la Educación de la Universidad de Alicante. 1086-1094. http://hdl.handle.net/10251/178199S1086109
    corecore