8 research outputs found
Predicting aging-related decline in physical performance with sparse electrophysiological source imaging
Objective: We introduce a methodology for selecting biomarkers from
activation and connectivity derived from Electrophysiological Source Imaging
(ESI). Specifically, we pursue the selection of stable biomarkers associated
with cognitive decline based on source activation and connectivity patterns of
resting-state EEG theta rhythm, used as predictors of physical performance
decline in aging individuals measured by a Gait Speed (GS) slowing. Methods:
Our two-step methodology involves estimating ESI using flexible
sparse-smooth-nonnegative models, from which activation ESI (aESI) and
connectivity ESI (cESI) features are derived. The Stable Sparse Classifier
method then selects potential biomarkers related to GS changes. Results and
Conclusions: Our predictive models using aESI outperform traditional methods
such as the LORETA family. The models combining aESI and cESI features provide
the best prediction of GS changes. Potential biomarkers from
activation/connectivity patterns involve orbitofrontal and temporal cortical
regions. Significance: The proposed methodology contributes to the
understanding of activation and connectivity of GS-related ESI and provides
features that are potential biomarkers of GS slowing. Given the known
relationship between GS decline and cognitive impairment, this preliminary work
opens novel paths to predict the progression of healthy and pathological aging
and might allow an ESI-based evaluation of rehabilitation programs
Canagliflozin and renal outcomes in type 2 diabetes and nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
Accurate and Efficient Simulation of Very High-Dimensional Neural Mass Models with Distributed-Delay Connectome Tensors
This paper introduces methods and a novel toolbox that efficiently integrates high-dimensional Neural Mass Models (NMMs) specified by two essential components. The first is the set of nonlinear Random Differential Equations (RDEs) of the dynamics of each neural mass. The second is the highly sparse three-dimensional Connectome Tensor (CT) that encodes the strength of the connections and the delays of information transfer along the axons of each connection. To date, simplistic assumptions prevail about delays in the CT, often assumed to be Dirac-delta functions. In reality, delays are distributed due to heterogeneous conduction velocities of the axons connecting neural masses. These distributed-delay CTs are challenging to model. Our approach implements these models by leveraging several innovations. Semi-analytical integration of RDEs is done with the Local Linearization (LL) scheme for each neural mass, ensuring dynamical fidelity to the original continuous-time nonlinear dynamic. This semi-analytic LL integration is highly computationally-efficient. In addition, a tensor representation of the CT facilitates parallel computation. It also seamlessly allows modeling distributed delays CT with any level of complexity or realism. This ease of implementation includes models with distributed-delay CTs. Consequently, our algorithm scales linearly with the number of neural masses and the number of equations they are represented with, contrasting with more traditional methods that scale quadratically at best. To illustrate the toolbox's usefulness, we simulate a single Zetterberg-Jansen and Rit (ZJR) cortical column, a single thalmo-cortical unit, and a toy example comprising 1000 interconnected ZJR columns. These simulations demonstrate the consequences of modifying the CT, especially by introducing distributed delays. The examples illustrate the complexity of explaining EEG oscillations, e.g., split alpha peaks, since they only appear for distinct neural masses. We provide an open-source Script for the toolbox
Harmonized-Multinational qEEG norms (HarMNqEEG)
This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings
EEG functional connectivity as a Riemannian mediator:An application to malnutrition and cognition
Mediation analysis assesses whether an exposure directly produces changes in cognitive behavior or is influenced by intermediate “mediators”. Electroencephalographic (EEG) spectral measurements have been previously used as effective mediators representing diverse aspects of brain function. However, it has been necessary to collapse EEG measures onto a single scalar using standard mediation methods. In this article, we overcome this limitation and examine EEG frequency-resolved functional connectivity measures as a mediator using the full EEG cross-spectral tensor (CST). Since CST samples do not exist in Euclidean space but in the Riemannian manifold of positive-definite tensors, we transform the problem, allowing for the use of classic multivariate statistics. Toward this end, we map the data from the original manifold space to the Euclidean tangent space, eliminating redundant information to conform to a “compressed CST.” The resulting object is a matrix with rows corresponding to frequencies and columns to cross spectra between channels. We have developed a novel matrix mediation approach that leverages a nuclear norm regularization to determine the matrix-valued regression parameters. Furthermore, we introduced a global test for the overall CST mediation and a test to determine specific channels and frequencies driving the mediation. We validated the method through simulations and applied it to our well-studied 50+-year Barbados Nutrition Study dataset by comparing EEGs collected in school-age children (5–11 years) who were malnourished in the first year of life with those of healthy classmate controls. We hypothesized that the CST mediates the effect of malnutrition on cognitive performance. We can now explicitly pinpoint the frequencies (delta, theta, alpha, and beta bands) and regions (frontal, central, and occipital) in which functional connectivity was altered in previously malnourished children, an improvement to prior studies. Understanding the specific networks impacted by a history of postnatal malnutrition could pave the way for developing more targeted and personalized therapeutic interventions. Our methods offer a versatile framework applicable to mediation studies encompassing matrix and Hermitian 3D tensor mediators alongside scalar exposures and outcomes, facilitating comprehensive analyses across diverse research domains.</p
Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo
BACKGROUND:
Cardiovascular (CV) disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Furthermore, patients with T2DM and acute coronary syndrome (ACS) have a particularly high risk of CV events. The glucagon-like peptide 1 receptor agonist, lixisenatide, improves glycemia, but its effects on CV events have not been thoroughly evaluated.
METHODS:
ELIXA (www.clinicaltrials.gov no. NCT01147250) is a randomized, double-blind, placebo-controlled, parallel-group, multicenter study of lixisenatide in patients with T2DM and a recent ACS event. The primary aim is to evaluate the effects of lixisenatide on CV morbidity and mortality in a population at high CV risk. The primary efficacy end point is a composite of time to CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. Data are systematically collected for safety outcomes, including hypoglycemia, pancreatitis, and malignancy.
RESULTS:
Enrollment began in July 2010 and ended in August 2013; 6,068 patients from 49 countries were randomized. Of these, 69% are men and 75% are white; at baseline, the mean ± SD age was 60.3 ± 9.7 years, body mass index was 30.2 ± 5.7 kg/m(2), and duration of T2DM was 9.3 ± 8.2 years. The qualifying ACS was a myocardial infarction in 83% and unstable angina in 17%. The study will continue until the positive adjudication of the protocol-specified number of primary CV events.
CONCLUSION:
ELIXA will be the first trial to report the safety and efficacy of a glucagon-like peptide 1 receptor agonist in people with T2DM and high CV event risk
Effect of SGLT2 Inhibitors on Stroke and Atrial Fibrillation in Diabetic Kidney Disease: Results From the CREDENCE Trial and Meta-Analysis
BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus.METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-analysis.RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (<45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]).CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02065791
Kidney and Cardiovascular Effects of Canagliflozin According to Age and Sex: A Post Hoc Analysis of the CREDENCE Randomized Clinical Trial
Rationale & Objective: It is unclear whether the effect of canagliflozin on adverse kidney and cardiovascular events in those with diabetic kid-ney disease varies by age and sex. We assessed the effects of canagliflozin among age group categories and between sexes in the Canagli-flozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) study.Study Design: Secondary analysis of a random-ized controlled trial. Setting & Participants: Participants in the CREDENCE trial. Intervention: Participants were randomly assigned to receive canagliflozin 100 mg/d or placebo.Outcomes: Primary composite outcome of kid-ney failure, doubling of serum creatinine con-centration, or death due to kidney or cardiovascular disease. Prespecified secondary and safety outcomes were also analyzed. Out-comes were evaluated by age at baseline (<60, 60-69, and >_70 years) and sex in the intention-to-treat population using Cox regression models.Results: The mean age of the cohort was 63.0 & PLUSMN; 9.2 years, and 34% were female. Older age and female sex were independently associ-ated with a lower risk of the composite of adverse kidney outcomes. There was no evidence that the effect of canagliflozin on the primary outcome (acomposite of kidney failure, a doubling of serum creatinine concentration, or death from kidney or cardiovascular causes) differed between age groups (HRs, 0.67 [95% CI, 0.52-0.87], 0.63 [0.4 8-0.82], and 0.89 [0.61-1.29] for ages <60, 60-69, and >_70 years, respectively; P = 0.3 for interaction) or sexes (HRs, 0.71 [95% CI, 0.5 4-0.95] and 0.69 [0.56-0.8 4] in women and men, respectively; P = 0.8 for interaction). No differences in safety outcomes by age group or sex were observed.Limitations: This was a post hoc analysis with multiple comparisons.Conclusions: Canagliflozin consistently reduced the relative risk of kidney events in people with diabetic kidney disease in both sexes and across age subgroups. As a result of greater background risk, the absolute reduction in adverse kidney outcomes was greater in younger participants.Funding: This post hoc analysis of the CREDENCE trial was not funded. The CREDENCE study was sponsored by Janssen Research and Development and was conducted collaboratively by the sponsor, an academic-led steering committee, and an academic research organization, George Clinical.Trial Registration: The original CREDENCE trial was registered at ClinicalTrials.gov with study number NCT02065791