10 research outputs found

    Autoimmune disease in mothers with the FMR1 premutation is associated with seizures in their children with fragile X syndrome

    Get PDF
    An increased prevalence of autoimmune diseases in family members of children with autism spectrum disorders (ASD) has been previously reported. ASD is also a common problem co-occurring in children with fragile X syndrome (FXS). Why ASD occurs in some individuals with FXS, but not all, is largely unknown. Furthermore, in premutation carrier mothers, there is an increased risk for autoimmune diseases. This study compared the rate of ASD and other neurodevelopmental/behavioral problems in 61 children with FXS born to 41 carrier mothers who had autoimmune disease and in 97 children with FXS of 78 carrier mothers who did not have autoimmune disease. There were no significant differences in the mean age (9.61 ± 5.59 vs. 9.41 ± 6.31, P = 0.836), cognitive and adaptive functioning in children of mothers with and without autoimmune disease. Among children whose mothers had autoimmune disease, the odds ratio (OR) for ASD was 1.27 (95% CI 0.62–2.61, P = 0.5115). Interestingly, the OR for seizures and tics was 3.81 (95% CI 1.13–12.86, P = 0.031) and 2.94 (95% CI 1.19–7.24, P = 0.019), respectively, in children of mothers with autoimmune disease compared to children of mothers without autoimmune disease. In conclusion, autoimmune disease in carrier mothers was not associated with the presence of ASD in their children. However, seizures and tics were significantly increased in children of mothers with autoimmune disease. This suggests a potential new mechanism of seizure and tic exacerbation in FXS related to an intergenerational influence from autoimmunity in the carrier mother

    FMR1 premutation and full mutation molecular mechanisms related to autism

    Get PDF
    Fragile X syndrome (FXS) is caused by an expanded CGG repeat (>200 repeats) in the 5′ un-translated portion of the fragile X mental retardation 1 gene (FMR1) leading to a deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA-binding protein that regulates the translation of a number of other genes that are important for synaptic development and plasticity. Furthermore, many of these genes, when mutated, have been linked to autism in the general population, which may explain the high comorbidity that exists between FXS and autism spectrum disorders (ASD). Additionally, premutation repeat expansions (55 to 200 CGG repeats) may also give rise to ASD through a different molecular mechanism that involves a direct toxic effect of FMR1 mRNA. It is believed that RNA toxicity underlies much of the premutation-related involvement, including developmental concerns like autism, as well as neurodegenerative issues with aging such as the fragile X-associated tremor ataxia syndrome (FXTAS). RNA toxicity can also lead to mitochondrial dysfunction, which is common in older premutation carriers both with and without FXTAS. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in idiopathic autism. Research regarding dysregulation of neurotransmitter systems caused by the lack of FMRP in FXS, including metabotropic glutamate receptor 1/5 (mGluR1/5) pathway and GABA pathways, has led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism

    Modifications of Microvascular EC Surface Modulate Phototoxicity of a Porphycene anti-ICAM-1 Immunoconjugate; Therapeutic Implications

    No full text
    Inflammation and shear stress can upregulate expression of cellular adhesion molecules in endothelial cells (EC). The modified EC surface becomes a mediating interface between the circulating blood elements and the endothelium, and grants opportunity for immunotherapy. In photodynamic therapy (PDT), immunotargeting might overcome the lack of selectivity of currently used sensitizers. In this study, we hypothesized that differential ICAM-1 expression modulates the effects of a drug targeted to surface ICAM-1. A novel porphycene–anti-ICAM-1 conjugate was synthesized and applied to treat endothelial cells from macro and microvasculature. Results show that the conjugate induces phototoxicity in inflamed, but not in healthy, microvascular EC. Conversely, macrovascular EC exhibited phototoxicity regardless of their state. These findings have two major implications; the relevance of ICAM-1 as a modulator of drug effects in microvasculature, and the potential of the porphycene bioconjugate as a promising novel PDT agent.Spain. Ministerio de Economia y Competividad (Grant BFU2009-0984)Spain. Ministerio de Economia y Competividad (Grant CTQ2010-20870-C03-01)National Institutes of Health (U.S.) (Grant NIH/NIGMS RO1/GM049039)Fundacio Empreses IQSFundacio Empreses POSIMATMIT-Spain Seed Fun

    The half-life of 129I

    No full text
    The radionuclide 129I is a long-lived fission product that decays to 129Xe by beta-particle emission. It is an important tracer in geological and biological processes and is considered one of the most important radionuclides to be assessed in studies of global circulation. It is also one of the major contributors to radiation dose from nuclear waste in a deep geological repository. Its half-life has been obtained by a combination of activity and mass concentration measurements in the frame of a cooperation of 6 European metrology institutes. The value obtained for the half-life of 129I is 16.14 (12) Ă— 106 a, in good agreement with recommended data but with a significant improvement in the uncertainty.JRC.G.2-Standards for Nuclear Safety, Security and Safeguard

    Synthesis, Spectroscopic and Photophysical Characterization and Photosensitizing Activity Toward Prokaryotic and Eukaryotic Cells of Porphyrin-Magainin and \u2013Buforin Conjugates

    No full text
    Cationic antimicrobial peptides (CAMPs) and photodynamic therapy (PDT) are attractive tools to combat infectious diseases and to stem further development of antibiotic resistance. In an attempt to increase the efficiency of bacteria inactivation, we conjugated a PDT photosensitizer, cationic or neutral porphyrin, to a CAMP, buforin or magainin. The neutral and hydrophobic porphyrin, which is not photoactive per se against Gram-negative bacteria, efficiently photoinactivated E. coli after conjugation to either buforin or magainin. Conjugation to magainin resulted in the considerable strengthening of the cationic and hydrophilic porphyrin\u2019s interaction with the bacterial cells as shown by the higher bacteria photoinactivation activity retained after bacterial suspension washings. The porphyrin-peptide conjugates also exhibited strong interaction capability as well as photoactivity toward eukaryotic cells, namely human fibroblasts. These findings suggest therefore that these CAMPs have the potential to carry drugs and other types of cargoes inside mammalian cells similarly to cell-penetrating peptides

    What Can We Learn about Autism from Studying Fragile X Syndrome?

    No full text
    corecore