1,134 research outputs found
Network Activity Monitoring Against Malware in Android Operating System
Googleâs Android is the most used Operating System in mobile devices but as its popularity has increased hackers have taken advantage of the momentum to plague Google Play (Androidâs Application Store) with multipurpose Malware that is capable of stealing private information and give the hacker remote control of smartphoneâs features in the worst cases. This work presents an innovative methodology that helps in the process of malware detection for Android Operating System, which addresses aforementioned problem from a different perspective that even popular Anti-Malware software has left aside. It is based on the analysis of a common characteristic to all different kinds of malware: the need of network communications, so the victim device can interact with the attacker. It is important to highlight that in order to improve the security level in Android, our methodology should be considered in the process of malware detection. As main characteristic, it does not need to install additional kernel modules or to root the Android device. And finally as additional characteristic, it is as simple as can be considered for non-experienced users
Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer.
Photoimmunotherapy (PIT) of cancer utilizes tumor-specific monoclonal antibodies conjugated to a photosensitizer phthalocyanine dye IR700 which becomes cytotoxic upon irradiation with near infrared light. In this study, we aimed to evaluate the efficacy of PIT on human pancreatic cancer cells in vitro and in vivo in an orthotopic nude mouse model. The binding capacity of anti-CEA antibody to BxPC-3 human pancreatic cancer cells was determined by FACS analysis. An in vitro cytotoxicity assay was used to determine cell death following treatment with PIT. For in vivo determination of PIT efficacy, nude mice were orthotopically implanted with BxPC-3 pancreatic tumors expressing green fluorescent protein (GFP). After tumor engraftment, the mice were divided into two groups: (1) treatment with anti-CEA-IR700 + 690 nm laser and (2) treatment with 690 nm laser only. Anti-CEA-IR700 (100 ÎŒg) was administered to group (1) via tail vein injection 24 hours prior to therapy. Tumors were then surgically exposed and treated with phototherapy at an intensity of 150 mW/cm2 for 30 minutes. Whole body imaging was done subsequently for 5 weeks using an OV-100 small animal imaging system. Anti-CEA-IR700 antibody bound to the BxPC3 cells to a high degree as shown by FACS analysis. Anti-CEA-IR700 caused extensive cancer cell killing after light activation compared to control cells in cytotoxicity assays. In the orthotopic models of pancreatic cancer, the anti-CEA-IR700 group had significantly smaller tumors than the control after 5 weeks (p<0.001). There was no significant difference in the body weights of mice in the anti-CEA-IR700 and control groups indicating that PIT was well tolerated by the mice
Technical analysis of CO2 capture pathways and technologies
The reduction of CO2 emissions to minimize the impact of the climate change has become a global priority. The continuous implementation of renewable energy sources increases energy efficiency, while the reduction of CO2 emissions opens new options for carbon capture technologies to reduce greenhouse gases emissions. The combination of carbon capture with renewable energy balancing production offers excellent potential for fuels and chemical products and can play an essential role in the future energy system. This paper includes a critical review of the state of the art of different CO2 capture engineering pathways and technologies including a techno-economics analysis and focusing on comparing these technologies depending on the final CO2 application. The current cost for CO2 capture is in the range of 60â110 USD/t, likely to halve by 2030. This review offers technical information to select the most appropriate technology to be used in specific processes and for the different carbon capture pathways, i.e., Pre-combustion, Post-Combustion and Direct Air Capture. This comparison includes the CO2 capture approach for biomethane production by biogas upgrading to substitute fossil natural gas and other alternatives fuels production routes which will be introduces in future works performed by this review authors.Funding for open access charge: Universidad de MĂĄlaga / CBUA
New Perspectives for Electrodialytic Remediation
Electrodialytic remediation has been widely used for the recovery of different contaminants from numerous matrices, such as, for example, polluted soils, wastewater sludge, fly ash, mine tailing or harbour sediments. The electrodialytic remediation is an enhancement of the electrokinetic remediation technique, and it consists of the use of ion-exchange membranes for the control of the acid and the alkaline fronts generated in the electrochemical processes. While the standard electrodialytic cell is usually built with three-compartment configuration, it has been shown that for the remediation of matrices that require acid environment, a two-compartment cell has given satisfactory removal efficiencies with reduced energy costs.
Recycling secondary batteries, with growing demand, has an increasing economic and environmental interest. This work focusses on the proposal of the electrodialytic remediation technique as a possible application for the recycling of lithium-ion cells and other secondary batteries. The recovery of valuable components, such as lithium, manganese, cobalt of phosphorous, based on current recycling processes and the characterization of solid waste is addressed.This work has received funding from the European Unionâs Horizon 2020 research and innovation programme under the Marie SkĆodowska-Curie grant agreement No. 778045. Paz-Garcia acknowledges the financial support from the University of Malaga, project: PPIT.UMA.B5.2018/17. Villen-Guzman acknowledges the funding from the University of Malaga for the postdoctoral fellowship PPIT.UMA.A.3.2.2018.
Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tec
Electrodialytic Recovery of Cobalt from Spent Lithium-Ion Batteries
ContribuciĂłn en congreso cientĂficoRecycling lithium-ion batteries has an increasing interest for economic and environmental reasons. Disposal of lithium-ion batteries imposes high risk to the environment due to the toxicity of some of their essential components. In addition to this, some of these components, such as cobalt, natural graphite and phosphorus, are included in the list of critical raw materials for the European Union due to their strategic importance in the manufacturing industry. Therefore, in the recent years, numerous research studies have been focused on the development of efficient processes for battery recycling and the selective recuperation of these key components.
LiCoO2 is the most common material use in current lithium-ion batteries cathodes. In the current work, an electrodialytic method is proposed for the recovery of cobalt from this kind of electrode. In a standard electrodialytic cell, the treated matrix is separated from the anode and the cathode compartments by means of ion-exchange membranes. A cation-exchange membrane (CEM) allows the passage of cations and hinders the passage of anions, while the behaviour of anion-exchange membrane (AEM) does the opposite. A three-compartment electrodialytic cell has been designed and assembled, as depicted in the figure. In the central compartment, a suspension of LiCoO2 is added.
Different extracting agents, such as EDTA, HCl and HNO3, are tested to enhanced the dissolution and the selective extraction of the target metal. Dissolved cobalt-containing complexes migrate towards the cathode or the anode compartments depending on the ionic charge of the complexes. While cobalt extraction via extracting agents is an expensive treatment, as it requires the constant addition of chemicals, an efficient electrodialytic cell could allow the recirculation of the extracting agents and the economical optimization of the process.This work has received funding from the European Unionâs Horizon 2020 research and innovation programme under the Marie SkĆodowska-Curie grant agreement No. 778045. Paz-Garcia acknowledges the financial support from the University of Malaga, project: PPIT.UMA.B5.2018/17. Villen-Guzman acknowledges the funding from the University of Malaga for the postdoctoral fellowship PPIT.UMA.A.3.2.2018.
Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tec
Flexible Work Arrangements and Employee Work Attitudes: A Case-Based Inquiry of a Small Non-Profit Response to Crisis
We conducted an exploratory case-based study to examine the impact of adopting flexible work arrangements strategies in response to the Covid-19 pandemic on employee work attitudes for a small, regional non-profit. Our findings indicated the importance of managerial support and organizational commitment to moderate the relationship between flexible work arrangements and job satisfaction. We also explored the influence of technology efficacy and work-life balance on the model. Our paper provides support for the prior empirical and theoretical assumptions that flexible work arrangements can have a positive impact on employee work attitudes and may be an effective managerial tool in response to a crisis
Effect of NaHCO3 addition on the anaerobic co-digestion of fruit and vegetable waste and sewage sludge performance
Digestion of FVW residues with sewage sludge is feasible as long as the FVW to sludge ratio
fed to the batch digester is not too large.
The pH is the main variable determining the reactor performance and can be controlled by
NaHCO3 addition.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Acid leaching of LiCoO2 enhanced by reducing agent. Model formulation and validation.
In this work, a model has been formulated to describe the complex process of LiCoO2 leaching through the participation of competing reactions in acid media including the effect of H2O2 as reducing agent. The model presented here describes the extraction of Li and Co in the presence and absence of H2O2, and it takes into account the different phenomena affecting the controlling mechanisms. In this context, the model predicts the swift from kinetic control to diffusion control. The model has been implemented and solved to simulate the leaching process. To validate the model and to estimate the model parameters, a set of 12 (in triplicate) extraction experiments were carried out varying the concentration of hydrochloric acid (within the range of 0.5â2.5 M) and hydrogen peroxide (range 0â0.6%v/v). The simulation results match fairly well with the experimental data for a wide range of conditions. Furthermore, the model can be used to predict results with different solid-liquid ratios as well as different acid and oxygen peroxide concentrations. This model could be used to design or optimize a LiCoO2 extraction process facilitating the corresponding economical balance of the treatment.This work has received funding from the European Unionâs Horizon 2020 research and innovation programme under the Marie SkĆodowska- Curie grant agreement No. 778045 and the âProyectos I+D+i en el marco del Programa Operativo FEDER AndalucĂa 2014â2020â, Project no. UMA18-FEDERJA-279. Cerrillo-Gonzalez acknowledges the FPU grant (FPU18/04295) obtained from the Spanish Ministry of Education. Funding for open access charge: Universidad de MĂĄlaga / CBUA
Alternative reducing agents for Lithium-Ion batteries recycling via hydrometallurgical process
Lithium-ion batteries (LIB) are a key factor in the transition to a decarbonised and clean energy system due to their application in the power sector and electric transport. However, a growing demand of these batteries involves two direct problems: an increase in the generation of spent LIBs as well as in the demand of raw materials. Hence, the development of efficient recycling treatment of LIBs is crucial to make them a true enabler of the green transition.
Currently, the LIBs recycling process can be divided into pyrometallurgical and hydrometallurgical. The first one is based on the treatment of LIBs at high temperatures to produces metal pyrolysis and metal reduction, while the second method consists in the recovery of metals via acidic leaching. Although pyrometallurgical method is the most used in the industry, hydrometallurgical process presents a series of advantages, such as low energy consumption, high metal recovery and high product purity, that make it more promising in the search of more effective recycling method. In the hydrometallurgical process, the addition of acids and reducing agents is required to dissolve the solid particles and extract the valuable metals.
The purpose of this work was to evaluate the effect of alternative reducing agent in the leaching process to maximize the amount of metal (Mn, Li, Ni, Co) recovered from a real LIBs waste. With this aim, the leaching processes were carried out using as reducing agent H2O2, Fe and NH4Cl. According to the experimental results, Fe and NH4Cl enhance the extraction yield as well as the reaction time comparing with the results obtain using H2O2.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
Hydrometallurgical extraction of Li and Co from LiCoO2 particlesâExperimental and Modeling
The use of lithium-ion batteries as energy storage in portable electronics and electric vehicles is increasing rapidly, which involves the consequent increase of battery waste. Hence, the development of reusing and recycling techniques is important to minimize the environmental impact of these residues and favor the circular economy goal. This paper presents experimental and modeling results for the hydrometallurgical treatment for recycling LiCoO2 cathodes from lithium-ion batteries. Previous experimental results for hydrometallurgical extraction showed that acidic leaching of LiCoO2 particles produced a non-stoichiometric extraction of lithium and cobalt. Furthermore, the maximum lithium extraction obtained experimentally seemed to be limited, reaching values of approximately 65â70%. In this paper, a physicochemical model is presented aiming to increase the understanding of the leaching process and the aforementioned limitations. The model describes the heterogeneous solidâliquid extraction mechanism and kinetics of LiCoO2 particles under a weakly reducing environment. The model presented here sets the basis for a more general theoretical framework that would describe the process under different acidic and reducing conditions. The model is validated with two sets of experiments at different conditions of acid concentration (0.1 and 2.5 M HCl) and solid to liquid ratio (5 and 50 g Lâ1). The COMSOL Multiphysics program was used to adjust the parameters in the kinetic model with the experimental results.This work has received funding from the European Unionâs Horizon 2020 research and innovation programme under the Marie SkĆodowska-Curie grant agreement No. 778045. Paz-Garcia acknowledges financial support from the program âProyectos I+D+i en el marco del Programa Operativo FEDER AndalucĂa 2014â2020â, No. UMA18-FEDERJA-279. Cerrillo-Gonzalez acknowledges the FPU grant obtained from the Spanish Ministry of Education. The University of Malaga is acknowledged for the financial support in the postdoctoral fellowship of Villen-Guzman
- âŠ