11 research outputs found

    Lack of Annexin A6 exacerbates liver dysfunction and reduces lifespan of Niemann-Pick type C protein-deficient mice

    Get PDF
    Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by cholesterol accumulation caused by loss-of-function mutations in the Npc1 gene. NPC disease primarily affects the brain, causing neuronal damage and affecting motor coordination. In addition, considerable liver malfunction in NPC disease is common. Recently, we found that the depletion of annexin A6 (ANXA6), which is most abundant in the liver and involved in cholesterol transport, ameliorated cholesterol accumulation in Npc1 mutant cells. To evaluate the potential contribution of ANXA6 in the progression of NPC disease, double-knockout mice (Npc1-/-/Anxa6-/-) were generated and examined for lifespan, eurologic and hepatic functions, as well as liver histology and ultrastructure. Interestingly, lack of ANXA6 in NPC1-deficient animals did not prevent the cerebellar degeneration phenotype, but further deteriorated their compromised hepatic functions and reduced their lifespan. Moreover, livers of Npc1-/-/Anxa6-/- mice contained a significantly elevated number of foam cells congesting the sinusoidal space, a feature commonly associated with inflammation. We hypothesize that ANXA6 deficiency in Npc1-/- mice not only does not reverse neurologic and motor dysfunction, but further worsens overall liver function, exacerbating hepatic failure in NPC disease

    Increased translation as a novel pathogenic mechanism in Huntington's disease

    No full text
    Huntington's disease is a neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the huntingtin gene. Striatal projection neurons are mainly affected, leading to motor symptoms, but molecular mechanisms involved in their vulnerability are not fully characterized. Here, we show that eIF4E binding protein (4E-BP), a protein that inhibits translation, is inactivated in Huntington's disease striatum by increased phosphorylation. Accordingly, we detected aberrant de novo protein synthesis. Proteomic characterization indicates that translation specifically affects sets of proteins as we observed upregulation of ribosomal and oxidative phosphorylation proteins and downregulation of proteins related to neuronal structure and function. Interestingly, treatment with the translation inhibitor 4EGI-1 prevented R6/1 mice motor deficits, although corticostriatal long-term depression was not markedly changed in behaving animals. At the molecular level, injection of 4EGI-1 normalized protein synthesis and ribosomal content in R6/1 mouse striatum. In conclusion, our results indicate that dysregulation of protein synthesis is involved in mutant huntingtin-induced striatal neuron dysfunction

    Celf4 controls mRNA translation underlying synaptic development in the prenatal mammalian neocortex

    No full text
    Abstract Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences

    Unveiling the role and life strategies of viruses from the surface to the dark ocean

    No full text
    Viruses are a key component of marine ecosystems, but the assessment of their global role in regulating microbial communities and the flux of carbon is precluded by a paucity of data, particularly in the deep ocean. We assessed patterns in viral abundance and production and the role of viral lysis as a driver of prokaryote mortality, from surface to bathypelagic layers, across the tropical and subtropical oceans. Viral abundance showed significant differences between oceans in the epipelagic and mesopelagic, but not in the bathypelagic, and decreased with depth, with an average power-law scaling exponent of −1.03 km−1 from an average of 7.76 × 106 viruses ml−1 in the epipelagic to 0.62 × 106 viruses ml−1 in the bathypelagic layer with an average integrated (0 to 4000 m) viral stock of about 0.004 to 0.044 g C m−2, half of which is found below 775 m. Lysogenic viral production was higher than lytic viral production in surface waters, whereas the opposite was found in the bathypelagic, where prokaryotic mortality due to viruses was estimated to be 60 times higher than grazing. Free viruses had turnover times of 0.1 days in the bathypelagic, revealing that viruses in the bathypelagic are highly dynamic. On the basis of the rates of lysed prokaryotic cells, we estimated that viruses release 145 Gt C year−1 in the global tropical and subtropical oceans. The active viral processes reported here demonstrate the importance of viruses in the production of dissolved organic carbon in the dark ocean, a major pathway in carbon cycling.ISSN:2375-254
    corecore