2,009 research outputs found

    External referencing and pharmaceutical price negociation.

    Get PDF
    External referencing (ER) imposes a price cap for pharmaceuticals, based on prices of identical or comparable products in foreign countries. Suppose a foreign country (F) negotiates prices with a pharmaceutical firm, whereas a home country (H) can either negotiate prices independently or implement ER, based on the foreign price. We show that country H prefers ER if copayments in H are relatively high. This preference is reinforced when H's population is small. Irrespective of relative country sizes, ER by country H harms country F. Our model is inspired by the wide European experience with this cost-containment policy. Namely, in Europe, drug authorization and price negotiations are carried out by separate agencies. We confirm our main results in two extensions. The first one allows for therapeutic competition between drugs. In the second one, drug authorization and price negotiation take place in a single agency.pharmaceuticals; external referencing; price negotiation;

    Two-Dimensional Line Strength Maps in Three Well-studied Early-Type Galaxies

    Get PDF
    Integral field spectroscopy has been obtained for the nuclear regions of 3 large, well-studied, early-type galaxies. From these spectra we have obtained line strength maps for about 20 absorption lines, mostly belonging to the Lick system. An extensive comparison with multi-lenslet spectroscopy shows that accurate kinematic maps can be obtained, and also reproducible line strength maps. Comparison with long-slit spectroscopy also produces good agreement. We show that Mg is enhanced with respect to Fe in the inner disk of one of the three galaxies studied, the Sombrero. [Mg/Fe] there is larger than in the rest of the bulge. The large values of Mg/Fe in the central disk are consistent with the centres of other early-type galaxies, and not with large disks, like the disk of our Galaxy, where [Mg/Fe] is approximately 0. We confirm with this observation a recent result of Worthey (1998) that Mg/Fe is determined by the central kinetic energy, or escape velocity, of the stars, only, and not by the formation time scale of the stars. A stellar population analysis using the models of Vazdekis et al. (1996) shows that our observed H gamma agrees well with what is predicted based on the other lines. Using the line strength of the Ca II IR triplet as an indicator of the abundance of Ca, we find that Ca follows Fe, and not Mg, in these galaxies. This is peculiar, given the fact that Ca is an alpha-element. Finally, by combining the results of this paper with those of Vazdekis et al. (1997) we find that the line strength gradients in the three galaxies are primarily caused by variations in metallicity.Comment: 23 pages, Latex, includes mn.sty, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Mg(II) and Ni(II) induce aggregation of poly(rA)poly(rU) to either tetra-aggregate or triplex depending on the metal ion concentration

    Get PDF
    The ability of magnesium(II) and nickel(II) to induce dramatic conformational changes in the synthetic RNA poly(rA)poly(rU) has been investigated. Kinetic experiments, spectrofluorometric titrations, melting experiments and DSC measurements contribute in shedding light on a complex behaviour where the action of metal ions (Na+, Mg2+, Ni2+), in synergism with other operators as the intercalating dye coralyne and temperature, all concur in stabilising a peculiar RNA form. Mg2+ and Ni2+ (M) bind rapidly and almost quantitatively to the duplex (AU) to give a RNA/metal ion complex (AUM). Then, by the union of two AUM units, an unstable tetraaggregate (UAUA(M2)*) is formed which, in the presence of a relatively modest excess of metal, evolves to the UAUM triplex by releasing a single AM strand. On the other hand, under conditions of high metal content, the UAUA(M2)* intermediate rearranges to give a more stable tetra-aggregate (UAUA(M2)). As concerns the role of coralyne (D), it is found that D strongly interacts with UAUA(M2). Also, in the presence of coralyne, the ability of divalent ions to promote the transition of AUD into UAUD is enhanced, according to the efficiency sequence [Ni2+]≫[Mg2+]≫[Na+]

    Binding of Al(III) to synthetic RNA and metal-mediated strand aggregation

    Get PDF
    Over the last few years, focused interest in aluminum has been heightened by recent studies regarding its health effects. Its possible relation with chronic diseases makes it convenient to address more in depth the reactivity of aluminum with biologically relevant molecules. The present work investigates the interaction of the aluminum ion with two synthetic RNAs, poly(rA) and poly(rU), through a detailed thermodynamic and kinetic study. The trivalent aluminum ion was kept in solution by complexation with the cacodylate anion, even at neutral pH, thus making the study with biological molecules feasible. The results obtained by spectrophotometry, circular dichroism, viscometry and thermal stability measurements indicate that aluminium strongly interacts with single and duplex RNA structures. The kinetic experiments point out that, even though cacodylate is required to keep the metal in solution, it actually inhibits the reaction of aluminum with RNA as it converts the metal into an unreactive dimer species. Notably, further interaction occurred in an excess of the aluminum/cacodylate complex, inducing aggregation of single-stranded RNAs. An analysis of the kinetic data has shown that the modes of aggregation of the two RNAs differ and such a difference can be ascribed to the diverse polynucleotide secondary structures. The observed stabilization of multiple-stranded systems by aluminum can serve as a model for future studies due to the interest aroused by this metal in the study of non-canonical nucleic acid structures

    Towards Mobile Edge Computing: Taxonomy, Challenges, Applications and Future Realms

    Get PDF
    The realm of cloud computing has revolutionized access to cloud resources and their utilization and applications over the Internet. However, deploying cloud computing for delay critical applications and reducing the delay in access to the resources are challenging. The Mobile Edge Computing (MEC) paradigm is one of the effective solutions, which brings the cloud computing services to the proximity of the edge network and leverages the available resources. This paper presents a survey of the latest and state-of-the-art algorithms, techniques, and concepts of MEC. The proposed work is unique in that the most novel algorithms are considered, which are not considered by the existing surveys. Moreover, the chosen novel literature of the existing researchers is classified in terms of performance metrics by describing the realms of promising performance and the regions where the margin of improvement exists for future investigation for the future researchers. This also eases the choice of a particular algorithm for a particular application. As compared to the existing surveys, the bibliometric overview is provided, which is further helpful for the researchers, engineers, and scientists for a thorough insight, application selection, and future consideration for improvement. In addition, applications related to the MEC platform are presented. Open research challenges, future directions, and lessons learned in area of the MEC are provided for further future investigation

    Novel anti-invasive properties of a Fascin1 inhibitor on colorectal cancer cells

    Get PDF
    Tumor invasion and metastasis involve processes in which actin cytoskeleton rearrangement induced by Fascin1 plays a crucial role. Indeed, Fascin1 has been found overexpressed in tumors with worse prognosis. Migrastatin and its analogues target Fascin1 and inhibit its activity. However, there is need for novel and smaller Fascin1 inhibitors. The aim of this study was to assess the effect of compound G2 in colorectal cancer cell lines and compare it to migrastatin in in vitro and in vivo assays. Molecular modeling, actin-bundling, cell viability, inmunofluorescence, migration, and invasion assays were carried out in order to test anti-migratory and anti-invasive properties of compound G2. In addition, the in vivo effect of compound G2 was evaluated in a zebrafish model of invasion. HCT-116 cells exhibited the highest Fascin1 expression from eight tested colorectal cancer cell lines. Compound G2 showed important inhibitory effects on actin bundling, filopodia formation, migration, and invasion in different cell lines. Moreover, compound G2 treatment resulted in significant reduction of invasion of DLD-1 overexpressing Fascin1 and HCT-116 in zebrafish larvae xenografts; this effect being less evident in Fascin1 known-down HCT-116 cells. This study proves, for the first time, the in vitro and in vivo anti-tumoral activity of compound G2 on colorectal cancer cells and guides to design improved compound G2-based Fascin1 inhibitors. Key messages center dot Fascin is crucial for tumor invasion and metastasis and is overexpressed in bad prognostic tumors. center dot Several adverse tumors overexpress Fascin1 and lack targeted therapy. center dot Anti-fascin G2 is for the first time evaluated in colorectal carcinoma and compared with migrastatin. center dot Filopodia formation, migration activity, and invasion in vitro and in vivo assays were performed. center dot G2 blocks actin structures, migration, and invasion of colorectal cancer cells as fascin-dependent.Peer reviewe

    New role of the antidepressant imipramine as a Fascin1 inhibitor in colorectal cancer cells

    Get PDF
    Colorectal cancer: Antitumor antidepressant The antidepressant drug imipramine can block the activity of a protein that contributes to the progression of certain aggressive tumors. Serrated adenocarcinoma (SAC) is a form of colorectal cancer with a poor prognosis. A key factor in SAC development is the overexpression of the protein fascin1, which promotes the formation of structures that help cancer cells move around, thereby leading to metastasis. Pablo Conesa-Zamora at Santa Lucia University Hospital in Cartagena, Horacio Perez-Sanchez at the Universidad Catolica de Murcia in Guadalupe, Spain, and coworkers demonstrated that imipramine shows promise in binding to fascin1 and blocking its activity. The team analyzed over 9500 compounds as potential fascin1 blockers, identifying imipramine as a possible option. In tests on human tissues and in vivo studies using zebrafish, the drug reduced cancer invasion and metastasis. Serrated adenocarcinoma (SAC) is more invasive, has worse outcomes than conventional colorectal carcinoma (CRC), and is characterized by frequent resistance to anti-epidermal growth factor receptor (EGFR) and overexpression of fascin1, a key protein in actin bundling that plays a causative role in tumor invasion and is overexpressed in different cancer types with poor prognosis. In silico screening of 9591 compounds, including 2037 approved by the Food and Drug Administration (FDA), was performed, and selected compounds were analyzed for their fascin1 binding affinity by differential scanning fluorescence. The results were compared with migrastatin as a typical fascin1 inhibitor. In silico screening and differential scanning fluorescence yielded the FDA-approved antidepressant imipramine as the most evident potential fascin1 blocker. Biophysical and different in vitro actin-bundling assays confirm this activity. Subsequent assays investigating lamellipodia formation and migration and invasion of colorectal cancer cells in vitro using 3D human tissue demonstrated anti-fascin1 and anti-invasive activities of imipramine. Furthermore, expression profiling suggests the activity of imipramine on the actin cytoskeleton. Moreover, in vivo studies using a zebrafish invasion model showed that imipramine is tolerated, its anti-invasive and antimetastatic activities are dose-dependent, and it is associated with both constitutive and induced fascin1 expression. This is the first study that demonstrates an antitumoral role of imipramine as a fascin1 inhibitor and constitutes a foundation for a molecular targeted therapy for SAC and other fascin1-overexpressing tumors.Peer reviewe
    corecore