3,161 research outputs found
Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces
In this work, the scattering of surface plasmons by a finite periodic array
of one-dimensional grooves is theoretically analyzed by means of a modal
expansion technique. We have found that the geometrical parameters of the array
can be properly tuned to achieve optimal performance of the structure either as
a Bragg reflector or as a converter of surface plasmons into light. In this
last case, the emitted light is collimated within a few degrees cone.
Importantly, we also show that a small number of indentations in the array are
sufficient to fully achieve its functional capabilities.Comment: 5 pages, 5 figures; changed sign convention in some definition
Entanglement detection in coupled particle plasmons
When in close contact, plasmonic resonances interact and become strongly
correlated. In this work we develop a quantum mechanical model, using the
language of continuous variables and quantum information, for an array of
coupled particle plasmons. This model predicts that when the coupling strength
between plasmons approaches or surpasses the local dissipation, a sizable
amount of entanglement is stored in the collective modes of the array. We also
prove that entanglement manifests itself in far-field images of the plasmonic
modes, through the statistics of the quadratures of the field, in what
constitutes a novel family of entanglement witnesses. This protocol is so
robust that it is indeed independent of whether our own model is correct.
Finally, we estimate the amount of entanglement, the coupling strength and the
correlation properties for a system that consists of two or more coupled
nanospheres of silver, showing evidence that our predictions could be tested
using present-day state-of-the-art technology.Comment: 8 pages (6 main text + 2 supplemental), 3 figure
Optical bistability in subwavelength apertures containing nonlinear media
We develop a self-consistent method to study the optical response of metallic
gratings with nonlinear media embedded within their subwavelength slits. An
optical Kerr nonlinearity is considered. Due to the large E-fields associated
with the excitation of the transmission resonances appearing in this type of
structures, moderate incoming fluxes result in drastic changes in the
transmission spectra. Importantly, optical bistability is obtained for certain
ranges of both flux and wavelength.Comment: 4 pages, 4 figure
Terahertz surface plasmon polariton propagation and focusing on periodically corrugated metal wires
In this letter we show how the dispersion relation of surface plasmon
polaritons (SPPs) propagating along a perfectly conducting wire can be tailored
by corrugating its surface with a periodic array of radial grooves. In this
way, highly localized SPPs can be sustained in the terahertz region of the
electromagnetic spectrum. Importantly, the propagation characteristics of these
spoof SPPs can be controlled by the surface geometry, opening the way to
important applications such as energy concentration on cylindrical wires and
superfocusing using conical structures.Comment: accepted at PRL, submitted 29th May 200
Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit
In this work we explore the transmission properties of a single slit in a
metallic screen. We analyze the dependence of these properties on both slit
width and angle of incident radiation. We study in detail the crossover between
the subwavelength regime and the geometrical-optics limit. In the subwavelength
regime, resonant transmission linked to the excitation of waveguide resonances
is analyzed. Linewidth of these resonances and their associated electric field
intensities are controlled by just the width of the slit. More complex
transmission spectra appear when the wavelength of light is comparable to the
slit width. Rapid oscillations associated to the emergence of different
propagating modes inside the slit are the main features appearing in this
regime.Comment: Accepted for publication in Phys. Rev.
On the transmission of light through a single rectangular hole
In this Letter we show that a single rectangular hole exhibits transmission
resonances that appear near the cutoff wavelength of the hole waveguide. For
light polarized with the electric field pointing along the short axis, it is
shown that the normalized-to-area transmittance at resonance is proportional to
the ratio between the long and short sides, and to the dielectric constant
inside the hole. Importantly, this resonant transmission process is accompanied
by a huge enhancement of the electric field at both entrance and exit
interfaces of the hole. These findings open the possibility of using
rectangular holes for spectroscopic purposes or for exploring non-linear
effects.Comment: Submitted to PRL on Feb. 9th, 200
Special Issue on "Strong Coupling of Molecules to Cavities"
This is the author accepted manuscript. The final version is available from American Chemical Society via the DOI in this record
Anderson localization in carbon nanotubes: defect density and temperature effects
The role of irradiation induced defects and temperature in the conducting
properties of single-walled (10,10) carbon nanotubes has been analyzed by means
of a first-principles approach. We find that di-vacancies modify strongly the
energy dependence of the differential conductance, reducing also the number of
contributing channels from two (ideal) to one. A small number of di-vacancies
(5-9) brings up strong Anderson localization effects and a seemly universal
curve for the resistance as a function of the number of defects. It is also
shown that low temperatures, around 15-65 K, are enough to smooth out the
fluctuations of the conductance without destroying the exponential dependence
of the resistivity as a function of the tube length.Comment: 4 pages, 4 figure
Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities
We investigate the conditions yielding plasmon-exciton strong coupling at the
single emitter level in the gap between two metal nanoparticles. A
quasi-analytical transformation optics approach is developed that makes
possible a thorough exploration of this hybrid system incorporating the full
richness of its plasmonic spectrum. This allows us to reveal that by placing
the emitter away from the cavity center, its coupling to multipolar dark modes
of both even and odd parity increases remarkably. This way, reversible dynamics
in the population of the quantum emitter takes place in feasible
implementations of this archetypal nanocavity.Comment: 5 pages, 4 figure
- …