7 research outputs found
Early imaging and molecular changes with neoadjuvant bevacizumab in stage ii/iii breast cancer
This prospective, phase II study evaluated novel biomarkers as predictors of response to bevacizumab in patients with breast cancer (BC), using serial imaging methods and gene expression analysis. Patients with primary stage II/III BC received bevacizumab 15 mg/kg (cycle 1; C1), then four cycles of neoadjuvant docetaxel doxorubicin, and bevacizumab every 3 weeks (C2–C5). Tumour proliferation and hypoxic status were evaluated using18F-fluoro-3'-deoxy-3'-L-fluorothymidine (FLT)-and18F-fluoromisonidazole (FMISO)-positron emission tomography (PET) at baseline, and during C1 and C5. Pre-and post-bevacizumab vascular changes were evaluated using dynamic contrastenhanced magnetic resonance imaging (DCE-MRI). Molecular biomarkers were assessed using microarray analysis. A total of 70 patients were assessed for treatment efficacy. Significant decreases from baseline in tumour proliferation (FLT-PET), vascularity, and perfusion (DCE-MRI) were observed during C1 (p = 0.001), independent of tumour subtype. Bevacizumab treatment did not affect hypoxic tumour status (FMISO-PET). Significant changes in the expression of 28 genes were observed after C1. Changes in vascular endothelial growth factor receptor (VEGFR)-2p levels were observed in 65 patients, with a > 20% decrease in VEGFR-2p observed in 13/65. Serial imaging techniques. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
18F-FDG PET/CT in breast cancer: Evidence-based recommendations in initial staging
Current guidelines do not systematically recommend 18F-FDG PET/CT for breast cancer staging; and the recommendations and level of evidence supporting its use in different groups of patients vary among guidelines. This review summarizes the evidence about the role of 18F-FDG PET/CT in breast cancer staging and the therapeutic and prognostic impact accumulated in the last decade. Other related aspects, such as the association of metabolic information with biology and prognosis are considered and evidence-based recommendations for the use of 18F-FDG PET/CT in breast cancer staging are offered. We systematically searched MEDLINE for articles reporting studies with at least 30 patients related to clinical questions following the Problem/Population, Intervention, Comparison, and Outcome framework. We critically reviewed the selected articles and elaborated evidence tables structuring the summarized information into methodology, results, and limitations. The level of evidence and the grades of recommendation for the use of 18F-FDG PET/CT in different contexts are summarized. Level III evidence supports the use of 18F-FDG PET/CT for initial staging in patients with recently diagnosed breast cancer; the diagnostic and therapeutic impact of the 18F-FDG PET/CT findings is sufficient for a weak recommendation in this population. In patients with locally advanced breast cancer, level II evidence supports the use of 18F-FDG PET/CT for initial staging; the diagnostic and therapeutic impact of the 18F-FDG PET/CT findings is sufficient for a strong recommendation in this population. In patients with recently diagnosed breast cancer, the metabolic information from baseline 18F-FDG PET/CT is associated with tumor biology and has prognostic implications, supported by level II evidence. In conclusion, 18F-FDG PET/CT is not recommended for staging all patients with early breast cancer, although evidence of improved regional and systemic staging supports its use in locally advanced breast cancer. Baseline tumor glycolytic activity is associated with tumor biology and prognosis
Assessment of metabolic patterns and new antitumoral treatment in osteosarcoma xenograft models by [18F]FDG and sodium [18F]fluoride PET
BACKGROUND: Osteosarcoma is the most common malignant bone tumor in children and young adults that produces aberrant osteoid. The aim of this study was to assess the utility of 2-deoxy-2-[18F-] fluoro-D-glucose ([18F] FDG) and sodium [18F] Fluoride (Na [18F] F) PET scans in orthotopic murine models of osteosarcoma to describe the metabolic pattern of the tumors, to detect and diagnose tumors and to evaluate the efficacy of a new treatment based in oncolytic adenoviruses.
METHODS: Orthotopic osteosarcoma murine models were created by the injection of 143B and 531MII cell lines. [18F]FDG and Na [18F] F PET scans were performed 30 days (143B) and 90 days (531MII) post-injection. The antitumor effect of two doses (107 and 108 pfu) of the oncolytic adenovirus VCN-01 was evaluated in 531 MII model by [18F] FDG PET studies. [18F] FDG uptake was quantified by SUVmax and Total Lesion Glycolysis (TLG) indexes. For Na [18F] F, the ratio tumor SUVmax/hip SUVmax was calculated. PET findings were confirmed by histopathological techniques.
RESULTS: The metabolic pattern of tumors was different between both orthotopic models. All tumors showed [18F] FDG uptake, with a sensitivity and specificity of 100%. The [18F] FDG uptake was significantly higher for the 143B model (p < 0.001). Sensitivity for Na [18F] F was around 70% in both models, with a specificity of 100%. 531MII tumors showed a heterogeneous Na [18F] F uptake, significantly higher than 143B tumors (p < 0.01)
Assessment of metabolic patterns and new antitumoral treatment in osteosarcoma xenograft models by [18F]FDG and sodium [18F]fluoride PET
BACKGROUND: Osteosarcoma is the most common malignant bone tumor in children and young adults that produces aberrant osteoid. The aim of this study was to assess the utility of 2-deoxy-2-[18F-] fluoro-D-glucose ([18F] FDG) and sodium [18F] Fluoride (Na [18F] F) PET scans in orthotopic murine models of osteosarcoma to describe the metabolic pattern of the tumors, to detect and diagnose tumors and to evaluate the efficacy of a new treatment based in oncolytic adenoviruses.
METHODS: Orthotopic osteosarcoma murine models were created by the injection of 143B and 531MII cell lines. [18F]FDG and Na [18F] F PET scans were performed 30 days (143B) and 90 days (531MII) post-injection. The antitumor effect of two doses (107 and 108 pfu) of the oncolytic adenovirus VCN-01 was evaluated in 531 MII model by [18F] FDG PET studies. [18F] FDG uptake was quantified by SUVmax and Total Lesion Glycolysis (TLG) indexes. For Na [18F] F, the ratio tumor SUVmax/hip SUVmax was calculated. PET findings were confirmed by histopathological techniques.
RESULTS: The metabolic pattern of tumors was different between both orthotopic models. All tumors showed [18F] FDG uptake, with a sensitivity and specificity of 100%. The [18F] FDG uptake was significantly higher for the 143B model (p < 0.001). Sensitivity for Na [18F] F was around 70% in both models, with a specificity of 100%. 531MII tumors showed a heterogeneous Na [18F] F uptake, significantly higher than 143B tumors (p < 0.01)
PET/TC con 18F-FDG en cáncer de cérvix localmente avanzado
El cáncer de cérvix es el segundo cáncer ginecológico en frecuencia a nivel mundial. En tumores localmente avanzados la PET/TC con 18F-FDG tiene un papel relevante en la detección de enfermedad ganglionar y a distancia, factores en los que se basan el tratamiento y el pronóstico de estas pacientes.
El objetivo de este trabajo es revisar las indicaciones actuales de la PET/TC con 18F-FDG en el cáncer de cérvix para cada una de las principales sociedades científicas (FIGO, NCCN, SEGO, SEOM, ESGO, ESMO) y la rentabilidad diagnóstica de la prueba comparada con las técnicas radiológicas convencionales, así como el procedimiento y su utilidad en la planificación de la radioterapia, en la valoración de respuesta y en la detección de recidiva.
Cervical cancer is the second most common gynecological cancer worldwide. In locally advanced cervical cancer, 18F-FDG PET/CT has become important in the initial staging, particularly in the detection of nodal and distant metastasis, aspects with treatment implications and prognostic value. The aims of this study were to review the role of 18F-FDG PET/CT in uterine cervical cancer, according to the guidelines of the main scientific institutions (FIGO, NCCN, SEGO, SEOM, ESGO, and ESMO) and its diagnostic accuracy compared to conventional radiological techniques, as well as to review the acquisition protocol and its utility in radiotherapy planning, response assessment and detection of recurrence