4 research outputs found

    Computational Determination of Air Valves Capacity Using CFD Techniques

    Full text link
    [EN] The analysis of transient flow is necessary to design adequate protection systems that support the oscillations of pressure produced in the operation of motor elements and regulation. Air valves are generally used in pressurized water pipes to manage the air inside them. Under certain circumstances, they can be used as an indirect control mechanism of the hydraulic transient. Unfortunately, one of the major limitations is the reliability of information provided by manufacturers and vendors, which is why experimental trials are usually used to characterize such devices. The realization of these tests is not simple since they require an enormous volume of previously stored air to be used in such experiments. Additionally, the costs are expensive. Consequently, it is necessary to develop models that represent the behaviour of these devices. Although computational fluid dynamics (CFD) techniques cannot completely replace measurements, the amount of experimentation and the overall cost can be reduced significantly. This work approaches the characterization of air valves using CFD techniques, including some experimental tests to calibrate and validate the results. A mesh convergence analysis was made. The results show how the CFD models are an efficient alternative to represent the behavior of air valves during the entry and exit of air to the system, implying a better knowledge of the system to improve it.This research was funded by the Program Fondecyt Regular, grant number 1180660.García-Todolí, S.; Iglesias Rey, PL.; Mora Melia, D.; Martínez-Solano, FJ.; Fuertes-Miquel, VS. (2018). Computational Determination of Air Valves Capacity Using CFD Techniques. Water. 10(10):1-16. https://doi.org/10.3390/w10101433S1161010Liou, C. P., & Hunt, W. A. (1996). Filling of Pipelines with Undulating Elevation Profiles. Journal of Hydraulic Engineering, 122(10), 534-539. doi:10.1061/(asce)0733-9429(1996)122:10(534)Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air. Journal of Hydraulic Engineering, 128(6), 625-634. doi:10.1061/(asce)0733-9429(2002)128:6(625)Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., … van’t Westende, J. M. C. (2012). Emptying of Large-Scale Pipeline by Pressurized Air. Journal of Hydraulic Engineering, 138(12), 1090-1100. doi:10.1061/(asce)hy.1943-7900.0000631Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., & Piccinni, A. (2016). Hydraulic Transients Caused by Air Expulsion During Rapid Filling of Undulating Pipelines. Water, 8(1), 25. doi:10.3390/w8010025Zhou, F., Hicks, F. E., & Steffler, P. M. (2002). Observations of Air–Water Interaction in a Rapidly Filling Horizontal Pipe. Journal of Hydraulic Engineering, 128(6), 635-639. doi:10.1061/(asce)0733-9429(2002)128:6(635)Vasconcelos, J. G., Wright, S. J., & Roe, P. L. (2006). Improved Simulation of Flow Regime Transition in Sewers: Two-Component Pressure Approach. Journal of Hydraulic Engineering, 132(6), 553-562. doi:10.1061/(asce)0733-9429(2006)132:6(553)Li, J., & McCorquodale, A. (1999). Modeling Mixed Flow in Storm Sewers. Journal of Hydraulic Engineering, 125(11), 1170-1180. doi:10.1061/(asce)0733-9429(1999)125:11(1170)Ramezani, L., Karney, B., & Malekpour, A. (2015). The Challenge of Air Valves: A Selective Critical Literature Review. Journal of Water Resources Planning and Management, 141(10), 04015017. doi:10.1061/(asce)wr.1943-5452.0000530Stephenson, D. (1997). Effects of Air Valves and Pipework on Water Hammer Pressures. Journal of Transportation Engineering, 123(2), 101-106. doi:10.1061/(asce)0733-947x(1997)123:2(101)Bianchi, A., Mambretti, S., & Pianta, P. (2007). Practical Formulas for the Dimensioning of Air Valves. Journal of Hydraulic Engineering, 133(10), 1177-1180. doi:10.1061/(asce)0733-9429(2007)133:10(1177)De Martino, G., Fontana, N., & Giugni, M. (2008). Transient Flow Caused by Air Expulsion through an Orifice. Journal of Hydraulic Engineering, 134(9), 1395-1399. doi:10.1061/(asce)0733-9429(2008)134:9(1395)Bhosekar, V. V., Jothiprakash, V., & Deolalikar, P. B. (2012). Orifice Spillway Aerator: Hydraulic Design. Journal of Hydraulic Engineering, 138(6), 563-572. doi:10.1061/(asce)hy.1943-7900.0000548Iglesias-Rey, P. L., Fuertes-Miquel, V. S., García-Mares, F. J., & Martínez-Solano, J. J. (2014). Comparative Study of Intake and Exhaust Air Flows of Different Commercial Air Valves. Procedia Engineering, 89, 1412-1419. doi:10.1016/j.proeng.2014.11.467Martins, N. M. C., Soares, A. K., Ramos, H. M., & Covas, D. I. C. (2016). CFD modeling of transient flow in pressurized pipes. Computers & Fluids, 126, 129-140. doi:10.1016/j.compfluid.2015.12.002Zhou, L., Liu, D., & Ou, C. (2011). Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Engineering Applications of Computational Fluid Mechanics, 5(1), 127-140. doi:10.1080/19942060.2011.11015357Davis, J. A., & Stewart, M. (2002). Predicting Globe Control Valve Performance—Part I: CFD Modeling. Journal of Fluids Engineering, 124(3), 772-777. doi:10.1115/1.1490108Stephens, D., Johnson, M. C., & Sharp, Z. B. (2012). Design Considerations for Fixed-Cone Valve with Baffled Hood. Journal of Hydraulic Engineering, 138(2), 204-209. doi:10.1061/(asce)hy.1943-7900.0000496Romero-Gomez, P., Ho, C. K., & Choi, C. Y. (2008). Mixing at Cross Junctions in Water Distribution Systems. I: Numerical Study. Journal of Water Resources Planning and Management, 134(3), 285-294. doi:10.1061/(asce)0733-9496(2008)134:3(285)Austin, R. G., Waanders, B. van B., McKenna, S., & Choi, C. Y. (2008). Mixing at Cross Junctions in Water Distribution Systems. II: Experimental Study. Journal of Water Resources Planning and Management, 134(3), 295-302. doi:10.1061/(asce)0733-9496(2008)134:3(295)Ho, C. K. (2008). Solute Mixing Models for Water-Distribution Pipe Networks. Journal of Hydraulic Engineering, 134(9), 1236-1244. doi:10.1061/(asce)0733-9429(2008)134:9(1236)Huang, J., Weber, L. J., & Lai, Y. G. (2002). Three-Dimensional Numerical Study of Flows in Open-Channel Junctions. Journal of Hydraulic Engineering, 128(3), 268-280. doi:10.1061/(asce)0733-9429(2002)128:3(268)Weber, L. J., Schumate, E. D., & Mawer, N. (2001). Experiments on Flow at a 90° Open-Channel Junction. Journal of Hydraulic Engineering, 127(5), 340-350. doi:10.1061/(asce)0733-9429(2001)127:5(340)Chanel, P. G., & Doering, J. C. (2008). Assessment of spillway modeling using computational fluid dynamics. Canadian Journal of Civil Engineering, 35(12), 1481-1485. doi:10.1139/l08-094Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., & Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering, 137(1), 66-74. doi:10.1061/(asce)hy.1943-7900.0000279Castillo, L., García, J., & Carrillo, J. (2017). Influence of Rack Slope and Approaching Conditions in Bottom Intake Systems. Water, 9(1), 65. doi:10.3390/w9010065Regueiro-Picallo, M., Naves, J., Anta, J., Puertas, J., & Suárez, J. (2016). Experimental and Numerical Analysis of Egg-Shaped Sewer Pipes Flow Performance. Water, 8(12), 587. doi:10.3390/w812058

    Impact of interstitial lung disease on the survival of systemic sclerosis with pulmonary arterial hypertension

    Get PDF
    To assess severity markers and outcomes of patients with systemic sclerosis (SSc) with or without pulmonary arterial hypertension (PAH-SSc/non-PAH-SSc), and the impact of interstitial lung disease (ILD) on PAH-SSc. Non-PAH-SSc patients from the Spanish SSc registry and PAH-SSc patients from the Spanish PAH registry were included. A total of 364 PAH-SSc and 1589 non-PAH-SSc patients were included. PAH-SSc patients had worse NYHA-functional class (NYHA-FC), worse forced vital capacity (FVC) (81.2 +/- 20.6% vs 93.6 +/- 20.6%, P < 0.001), worse tricuspid annular plane systolic excursion (TAPSE) (17.4 +/- 5.2 mm vs 19.9 +/- 6.7 mm, P < 0.001), higher incidence of pericardial effusion (30% vs 5.2%, P < 0.001) and similar prevalence of ILD (41.8% vs. 44.9%). In individuals with PAH-SSc, ILD was associated with worse hemodynamics and pulmonary function tests (PFT). Up-front combination therapy was used in 59.8% and 61.7% of patients with and without ILD, respectively. Five-year transplant-free survival rate was 41.1% in PAH-SSc patients and 93.9% in non-PAH-SSc patients (P < 0.001). Global survival of PAH-SSc patients was not affected by ILD regardless its severity. The multivariate survival analysis in PAH-SSc patients confirmed age at diagnosis, worse NYHA-FC, increased PVR, reduced DLCO, and lower management with up-front combination therapy as major risk factors. In conclusion, in PAH-SSc cohort risk of death was greatly increased by clinical, PFT, and hemodynamic factors, whereas it was decreased by up-front combination therapy. Concomitant ILD worsened hemodynamics and PFT in PAH-SSc but not survival regardless of FVC impairment

    Impact of interstitial lung disease on the survival of systemic sclerosis with pulmonary arterial hypertension

    Get PDF
    To assess severity markers and outcomes of patients with systemic sclerosis (SSc) with or without pulmonary arterial hypertension (PAH-SSc/non-PAH-SSc), and the impact of interstitial lung disease (ILD) on PAH-SSc. Non-PAH-SSc patients from the Spanish SSc registry and PAH-SSc patients from the Spanish PAH registry were included. A total of 364 PAH-SSc and 1589 non-PAH-SSc patients were included. PAH-SSc patients had worse NYHA-functional class (NYHA-FC), worse forced vital capacity (FVC) (81.2 ± 20.6% vs 93.6 ± 20.6%, P &lt; 0.001), worse tricuspid annular plane systolic excursion (TAPSE) (17.4 ± 5.2 mm vs 19.9 ± 6.7 mm, P &lt; 0.001), higher incidence of pericardial effusion (30% vs 5.2%, P &lt; 0.001) and similar prevalence of ILD (41.8% vs. 44.9%). In individuals with PAH-SSc, ILD was associated with worse hemodynamics and pulmonary function tests (PFT). Up-front combination therapy was used in 59.8% and 61.7% of patients with and without ILD, respectively. Five-year transplant-free survival rate was 41.1% in PAH-SSc patients and 93.9% in non-PAH-SSc patients (P &lt; 0.001). Global survival of PAH-SSc patients was not affected by ILD regardless its severity. The multivariate survival analysis in PAH-SSc patients confirmed age at diagnosis, worse NYHA-FC, increased PVR, reduced DLCO, and lower management with up-front combination therapy as major risk factors. In conclusion, in PAH-SSc cohort risk of death was greatly increased by clinical, PFT, and hemodynamic factors, whereas it was decreased by up-front combination therapy. Concomitant ILD worsened hemodynamics and PFT in PAH-SSc but not survival regardless of FVC impairment

    Análisis experimental del comportamiento de válvulas hidráulicas reductoras de presión en conexión proporcional

    Full text link
    [EN] This work explores the relationship between the input pressures and outlet valve when the hydraulic valve is connected in mode proportional reduction downstream camera. Before to testing the hydraulic valves with accessories are characterized curves obtained flow coefficient (Kv) of each device tested. The tests were raised for different inlet pressures, flow rates varying operating, measuring differences in pressure for each flow. In the assays degrees of opening of each valve and the reduction ratio for each tested flow and pressure tested for each entry they are obtained.[ES] Este trabajo investiga la relación entre las presiones de entrada en válvula y las de salida cuando la válvula hidráulica está conectada en el modo de reducción proporcional, aguas abajo con cámara. Previo a los ensayos se caracterizan las válvulas hidráulicas con sus accesorios, obteniéndose las curvas de coeficiente de caudal (Kv) de cada dispositivo ensayado. Los ensayos se plantean para diferentes presiones de entrada, variando los caudales de funcionamiento, midiéndose las diferencias de presión existente para cada caudal. En los ensayos se obtienen los grados de apertura de cada válvula y el ratio de reducción para cada caudal ensayado y para cada presión de entrada ensayada.García Todolí, S. (2016). Análisis experimental del comportamiento de válvulas hidráulicas reductoras de presión en conexión proporcional. http://hdl.handle.net/10251/77863TFG
    corecore