30 research outputs found

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Determinación rápida de la identidad del polisacárido de Salmonella Typhi y toxoide diftérico en vacunas conjugadas

    No full text
    El polisacárido Vi (PsVi) de Salmonella Typhi es un antígeno T-independiente y ha demostrado ser protector en adultos jóvenes. Sin embargo, para aumentar la respuesta de anticuerpos y conferir propiedades T-dependientes al polisacárido, se ha conjugado a proteínas. Dentro de los controles exigidos por los organismos regulatorios para estas vacunas está la identidad antigénica de sus componentes y para eso se recomiendan el uso de técnicas de Resonancia Magnética Nuclear o técnicas serológicas. El objetivo del presente trabajo, fue establecer las condiciones óptimas de trabajo de un Dot Blot que permitiera determinar, rápidamente, la identidad de los antígenos en vacunas conjugadas contra S. Typhi. Para ello, se estudiaron los tiempos de incubación, las concentraciones óptimas de anticuerpo monoclonal (AcM) y del ingrediente farmacéutico activo (IFA), así como los volúmenes de aplicación óptimos para las IFAs y formulaciones vacunales, tanto para el PsVi como para el toxoide diftérico (TD). Los resultados mostraron que para la determinación de la identidad antigénica fueron suficientes 5 µL de muestras de los conjugados monovalentes en una dilución de 1/10 (vol/vol) e igual volumen para las formulaciones vacunales. Quedó demostrado que la concentración de 2,5 µg/mL para el AcM contra el PsVi y a 2 µg/mL para el AcM contra TD fueron suficientes para la determinación; mientras que los tiempos de incubación fueron ajustados a 15 min con incubación a 37 ºC. Como conclusión del trabajo se puede decir que quedaron establecidas las condiciones óptimas de trabajo para la determinación rápida de la identidad antigénica del PsVi y del TD presentes en IFA y formulaciones vacunales conjugadas

    Assessing the immunogenicity and toxicity of the AFPL1-conjugate nicotine vaccine using heterologous and homologous vaccination routes.

    No full text
    Despite the increased risks of cancers and cardiovascular related diseases, tobacco smoking continues to be prevalent in the population due largely in part to the addictive nature of nicotine. Nicotine vaccines are an attractive alternative to the current smoking cessation options but have yet to be successful enough in clinical trials to reach the market due to a lack of neutralizing antibodies and inconsistent results. Using AFPL1 derived from the Cuban meningococcal vaccine as an adjuvant, we have previously published promising results with an intranasally administered nicotine vaccine. In order to examine the immunogenicity and safety of this vaccine in mice we set up a pilot trial administering the vaccine either intranasally, intramuscularly or utilizing both routes simultaneously and evaluated immune responses and clinical symptoms throughout the duration of the vaccination protocol and post-mortem. These data further demonstrate the ability of the AFPL1 nicotine conjugate vaccine to be a safe and potential candidate for clinical use

    Validation and application of an ELISA for the quantification of IgG antibodies against Salmonella Typhi Vi capsular polysaccharide

    No full text
    An indirect ELISA for the quantification of IgG antibodies against the Vi polysaccharide of this bacteria was developed as a part of the stages of Research and Development of a conjugate vaccinal candidate against Salmonella Typhi. The results of the validation process are presented in this paper, in which the interval and linearity of the curve, the intra- and inter-assay precision, accuracy, specificity, limit of detection and robustness were determined. The calibration curve generated with an internal standard serum provided a good fit to a polynomial function and an interval between 1/100 and 1/3200 dilutions. The coefficients of variation in the precision and robustness tests and the percentages of recovered were in intervals established for each one (≤10%, ≤20% and 90-110%, respectively). The assay presented an optimal specificity, obtaining OD signals above 1.3 for positive sera against Vi and low for sera against unrelated antigens. The results support the use of this quantitative ELISA in immunogenicity assays for batch release of Vi conjugates. Likewise, they support their use for the immunogenicity evaluation of Vi polysaccharide formulations and Vi polysaccharide conjugates to proteins in phases of research and developmen

    Repeat-Dose Toxicity Study Using the AFPL1-Conjugate Nicotine Vaccine in Male Sprague Dawley Rats

    No full text
    Tobacco smoking is the cause of 20% of Canadian deaths per year. Nicotine vaccines present a promising alternative to traditional smoking cessation products, but to date, no vaccine has been able to move through all phases of clinical trials. We have previously demonstrated that the AFPL1-conjugate nicotine vaccine does not induce systemic or immunotoxicity in a mouse model and that a heterologous vaccination approach is more advantageous than the homologous routes to inducing mucosal and systemic anti-nicotine antibodies. The purpose of this study was to confirm the safety profile of the vaccine in a repeat-dose toxicity study. The heterologous vaccination strategy was again used, and Sprague Dawley rats were administered a dose five times greater than in our previous studies. Physiological conditions, food and water consumption, body temperature, injection site inflammation, relative weights of organs, histopathology, and blood chemistry and hematology were evaluated during the course of the vaccination period to determine the safety of the vaccine. The AFPL1-conjugate nicotine vaccine did not induce clinically relevant changes or induce symptoms that would be associated with toxicity, making it a promising candidate for future investigations

    Comparative Immune Response after Vaccination with SOBERANA<sup>®</sup> 02 and SOBERANA<sup>®</sup> plus Heterologous Scheme and Natural Infection in Young Children

    No full text
    (1) Background: In children, SARS-CoV-2 infection is mostly accompanied by mild COVID-19 symptoms. However, multisystem inflammatory syndrome (MIS-C) and long-term sequelae are often severe complications. Therefore, the protection of the pediatric population against SARS-CoV-2 with effective vaccines is particularly important. Here, we compare the humoral and cellular immune responses elicited in children (n = 15, aged 5–11 years) vaccinated with the RBD-based vaccines SOBERANA® 02 and SOBERANA® Plus combined in a heterologous scheme with those from children (n = 10, aged 4–11 years) who recovered from mild symptomatic COVID-19. (2) Methods: Blood samples were taken 14 days after the last dose for vaccinated children and 45–60 days after the infection diagnosis for COVID-19 recovered children. Anti-RBD IgG and ACE2-RBD inhibition were assessed by ELISA; IgA, cytokines, and cytotoxic-related proteins were determined by multiplex assays. Total B and T cell subpopulations and IFN-γ release were measured by multiparametric flow cytometry using a large panel of antibodies after in vitro stimulation with S1 peptides. (3) Results: Significant higher levels of specific anti-RBD IgG and IgA and ACE2-RBD inhibition capacity were found in vaccinated children in comparison to COVID-19 recovered children. Th1-like and Th2-like CD4+ T cells were also significantly higher in vaccinated subjects. IFN-γ secretion was higher in central memory CD4+ T cells of COVID-19 recovered children, but no differences between both groups were found in the CD4+ and CD8+ T cell effector, terminal effector, and naïve T cell subpopulations. In contrast to low levels of IL-4, high levels of IL-2, IL-6, IFN-γ, and IL-10 suggest a predominant Th1 cell polarization. Cytotoxic-related proteins granzyme A and B, perforin, and granulin were also found in the supernatant after S1 stimulation in both vaccinated and recovered children. (4) Conclusions: Vaccination with the heterologous scheme of SOBERANA® 02/SOBERANA® Plus induces a stronger antibody and cellular immune response compared to natural infections in young children

    Efecto de la hemina-arginina y el QF12 en la incorporación de 59 Fe en los eritrocitos de ratones Effect of hemin-arginine and QF12 on the incorporation of 59 Fe in mice erythrocytes

    No full text
    Se estudió el efecto de 2 compuestos de hemina obtenidos en el Centro de Química Farmacéutica: la hemina-arginina y el QF12, en el porcentaje de incorporación de 59 Fe a los eritrocitos circulantes de ratones normales. Se observó diferencia estadísticamente significativa entre todos los grupos al segundo día (p = 0,022). En las pruebas a posteriori, se encontró que el porcentaje de incorporación de 59 Fe promedio del grupo que recibió el QF12 a 6 mg/kg fue significativamente mayor que el que se obtuvo con el placebo (p = 0,021) y significativamente mayor que los encontrados con la hemina-arginina a 3 mg/kg (p = 0,021) y con la hemina-arginina a 6 mg/kg (p = 0,016), al segundo día después de la inyección del 59 Fe. La obtención del QF12, primer compuesto hemínico cubano, y el éxito obtenido en su primer ensayo preclínico, permitieron realizar la solicitud de su patente<br>The effect of 2 hemin compounds (hemin-arginine and QF12 ) obtained at the Center of Pharmaceutical Chemistry on the percentage of incorporation of 59 Fe in the circulating erythrocytes of normal mice was studied. A statistically significant difference was observed between the 2 groups on the second day (p = 0.022). In the a posteriori tests it was found that the average percentage of incorporation of 59 Fe of the group that received QF12 at 6 mg/kg was markedly higher than the one obtained with placebo (p = 0.021), and remarkably higher than the found with hemin-arginine at 3 mg/kg (p = 0.021), and with hemin-arginine at 6 mg/kg (p = 0.016) on the second day after the injection of 59 Fe. The obtention of QF12, the first Cuban heminic compound, and the success attained in its first preclinical test, allowed to request its paten

    Bioengineered polyester beads co-displaying protein and carbohydrate-based antigens induce protective immunity against bacterial infection

    No full text
    Abstract The efficacy of protein and carbohydrate antigens as vaccines can be improved via particulate delivery strategies. Here, protein and carbohydrate antigens used in formulations of vaccines against Neisseria menigitidis were displayed on in vivo assembled polyester beads using a combined bioengineering and conjugation approach. An endotoxin-free mutant of Escherichia coli was engineered to produce translational fusions of antigens (Neisseria adhesin A (NadA) and factor H binding protein (fHbp) derived from serogroup B) to the polyhydroxybutyrate synthase (PhaC), in order to intracellularly assemble polyester beads displaying the respective antigens. Purified beads displaying NadA showed enhanced immunogenicity compared to soluble NadA. Both soluble and particulate NadA elicited functional antibodies with bactericidal activity associated with protective immunity. To expand the antigen repertoire and to design a more broadly protective vaccine, NadA-PhaC beads were additionally conjugated to the capsular polysaccharide from serogroup C. Co-delivery of surface displayed NadA and the capsular polysaccharide induced a strong and specific Th1/Th17 mediated immune response associated with functional bactericidal antibodies. Our findings provide the foundation for the design of multivalent antigen-coated polyester beads as suitable carriers for protein and polysaccharide antigens in order to induce protective immunity
    corecore