1,378 research outputs found

    Nonsingular charged black holes \`{a} la Palatini

    Full text link
    We argue that the quantum nature of matter and gravity should lead to a discretization of the allowed states of the matter confined in the interior of black holes. To support and illustrate this idea, we consider a quadratic extension of General Relativity formulated \`{a} la Palatini and show that nonrotating, electrically charged black holes develop a compact core at the Planck density which is nonsingular if the mass spectrum satisfies a certain discreteness condition. We also find that the area of the core is proportional to the number of charges times the Planck area.Comment: 10 single column page

    New scalar compact objects in Ricci-based gravity theories

    Get PDF
    Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers

    Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC) by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement

    Get PDF
    Low-pH cements are designed to be used in underground repositories for high level waste. When they are based on Ordinary Portland Cements (OPC), high mineral admixture contents must be used which significantly modify their microstructure properties and performance. This paper evaluates the microstructure evolution of low-pH cement pastes based on OPC plus silica fume and/or fly ashes, using Mid-Infrared and Near-Infrared spectroscopy to detect cement pastes mainly composed of high polymerized C-A-S-H gels with low C/S ratios. In addition, the lower pore solution pH of these special cementitious materials have been monitored with embedded metallic sensors. Besides, as the use of reinforced concrete can be required in underground repositories, the influence of low-pH cementitious materials on steel reinforcement corrosion was analysed. Due to their lower pore solution pH and their different pore solution chemical composition a clear influence on steel reinforcement corrosion was detecte

    Armonización del análisis NIRS de grasa de cerdo ibérico: transferencia de calibraciones de ácidos grasos

    Get PDF
    El objetivo del presente trabajo es mostrar la posibilidad de transferir ecuaciones de calibración para la determinación de ácidos grasos en grasa de cerdo Ibérico en diferentes instrumentos NIRS, empleando para ello cápsulas no selladas

    Adipose-Derived Stem Cells in Crohn's Rectovaginal Fistula

    Get PDF
    Therapeutic options for recto-vaginal fistula in the setting of Crohn's disease are limited and many data are available in the literature. The manuscript describes the history of a patient who has been the pioneer of our Clinical Trials in treating this disease in fistulizing Crohn's disease environment. We believe it is the first time that a patient with this disease has been treated by adipose-derived stem cells in allogeneic form. The conclusion of our study with Mary is that the use of mesenchymal stem cells derived from adipose tissue is secure, either in autologous or allogeneic form. Furthermore, we have proved that if we use multi-dose and multiple applications on a patient, it does not produce any adverse effect, which confirms us the safety of using these cells in patients at least in the fistulizing Crohn's disease environment

    Stellar structure models in modified theories of gravity: lessons and challenges.

    Get PDF
    The understanding of stellar structure represents the crossroads of our theories of the nuclear force and the gravitational interaction under the most extreme conditions observably accessible. It provides a powerful probe of the strong field regime of General Relativity, and opens fruitful avenues for the exploration of new gravitational physics. The latter can be captured via modified theories of gravity, which modify the Einstein-Hilbert action of General Relativity and/or some of its principles. These theories typically change the Tolman-Oppenheimer-Volkoff equations of stellar's hydrostatic equilibrium, thus having a large impact on the astrophysical properties of the corresponding stars and opening a new window to constrain these theories with present and future observations of different types of stars. For relativistic stars, such as neutron stars, the uncertainty on the equation of state of matter at supranuclear densities intertwines with the new parameters coming from the modified gravity side, providing a whole new phenomenology for the typical predictions of stellar structure models, such as mass-radius relations, maximum masses, or moment of inertia. For non-relativistic stars, such as white, brown and red dwarfs, the weakening/strengthening of the gravitational force inside astrophysical bodies via the modified Newtonian (Poisson) equation may induce changes on the star's mass, radius, central density or luminosity, having an impact, for instance, in the Chandrasekhar's limit for white dwarfs, or in the minimum mass for stable hydrogen burning in high-mass brown dwarfs. This work aims to provide a broad overview of the main such results achieved in the recent literature for many such modified theories of gravity, by combining the results and constraints obtained from the analysis of relativistic and non-relativistic stars in different scenarios. Moreover, we will build a bridge between the efforts of the community working on different theories, formulations, types of stars, theoretical modelings, and observational aspects, highlighting some of the most promising opportunities in the field. (C) 2020 Elsevier B.V. All rights reserved
    corecore