335 research outputs found

    Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution

    Full text link
    We present deep echelle spectrophotometry of the brightest emission-line knots of the star-forming galaxies He 2-10, Mkn 1271, NGC 3125, NGC 5408, POX 4, SDSS J1253-0312, Tol 1457-262, Tol 1924-416 and the HII region Hubble V in the Local Group dwarf irregular galaxy NGC 6822. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10420 {\AA} range. We determine electron densities and temperatures of the ionized gas from several emission-line intensity ratios for all the objects. We derive the ionic abundances of C2+^{2+} and/or O2+^{2+} from faint pure recombination lines (RLs) in several of the objects, permitting to derive their C/H and C/O ratios. We have explored the chemical evolution at low metallicities analysing the C/O vs. O/H, C/O vs. N/O and C/N vs. O/H relations for Galactic and extragalactic HII regions and comparing with results for halo stars and DLAs. We find that HII regions in star-forming dwarf galaxies occupy a different locus in the C/O vs. O/H diagram than those belonging to the inner discs of spiral galaxies, indicating their different chemical evolution histories, and that the bulk of C in the most metal-poor extragalactic HII regions should have the same origin than in halo stars. The comparison between the C/O ratios in HII regions and in stars of the Galactic thick and thin discs seems to give arguments to support the merging scenario for the origin of the Galactic thick disc. Finally, we find an apparent coupling between C and N enrichment at the usual metallicities determined for HII regions and that this coupling breaks in very low-metallicity objects.Comment: 27 pages, 12 figures, Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Carbon and oxygen in HII regions of the Magellanic Clouds: abundance discrepancy and chemical evolution

    Full text link
    We present C and O abundances in the Magellanic Clouds derived from deep spectra of HII regions. The data have been taken with the Ultraviolet-Visual Echelle Spectrograph at the 8.2-m VLT. The sample comprises 5 HII regions in the Large Magellanic Cloud (LMC) and 4 in the Small Magellanic Cloud (SMC). We measure pure recombination lines (RLs) of CII and OII in all the objects, permitting to derive the abundance discrepancy factors (ADFs) for O^2+, as well as their O/H, C/H and C/O ratios. We compare the ADFs with those of other HII regions in different galaxies. The results suggest a possible metallicity dependence of the ADF for the low-metallicity objects, but more uncertain for high-metallicity objects. We compare nebular and B-type stellar abundances and we find that the stellar abundances agree better with the nebular ones derived from collisionally excited lines (CELs). Comparing these results with other galaxies we observe that stellar abundances seem to agree better with the nebular ones derived from CELs in low-metallicity environments and from RLs in high-metallicity environments. The C/H, O/H and C/O ratios show almost flat radial gradients, in contrast with the spiral galaxies where such gradients are negative. We explore the chemical evolution analysing C/O vs. O/H and comparing with the results of HII regions in other galaxies. The LMC seems to show a similar chemical evolution to the external zones of small spiral galaxies and the SMC behaves as a typical star-forming dwarf galaxy.Comment: Accepted for publication in MNRAS, 17 pages, 11 figures, 8 table

    Determinación de residuos de plaguicidas en aceitunas empleando análisis por extracción líquida de la superficie seguida por cromatografía líquida / espectrometría de masas en tándem

    Get PDF
    Nowadays, pesticides are essential in modern agriculture for crop protection, however, this use supposes a potential risk for human health and the environment. Traditional techniques of pesticide determination require the use of laborious and complex extraction methods to separate pesticides from the matrix, above all in fatty matrices like olives. For this reason, a new simple, rapid, cheap and selective method for the extraction and quantification of the most frequently used pesticides in olive growing has been developed. Pesticide determination was carried out by ultra-performance liquid chromatography (UPLC) coupled with triple-quadrupole tandem mass spectrometry (MS/MS). Mean recoveries were found in a range between 73 and 114% with relative standard deviations lower than 20% in most pesticides evaluated and the limits of detection (LODs) and quantification (LOQs) were lower than 4 μg· kg-1 and 8 μg· kg-1, respectively. Finally, this method was applied to the analysis of 25 olive samples where Dimethoate and Terbuthylazine were detected in some cases, but their results were lower than 15 μg· kg-1.Hoy en día los pesticidas son esenciales en la agricultura moderna para la protección de los cultivos pero su uso supone un riesgo para la salud y el medio ambiente. Las técnicas tradicionales de determinación de pesticidas requieren el uso de métodos de extracción complejos a fin de separar los pesticidas de la matriz, sobre todo en matrices grasas como las aceitunas. Por ello, se ha desarrollado un nuevo método simple, rápido, barato y selectivo para la extracción y cuantificación de los pesticidas más frecuentemente utilizados en el cultivo del olivo, empleando cromatografía líquida de ultra-resolución (UPLC) acoplada a espectrometría de masas (MS/MS). Las recuperaciones alcanzadas variaron entre el 73 y 114% obteniendo desviaciones estándar relativas inferiores al 20%. Los límites de detección (LD) y cuantificación (LQ) fueron inferiores a 4 y 8 μg·kg −1, respectivamente. Finalmente, este método fue aplicado en 25 muestras de aceitunas donde se detectaron Dimetoato y Terbutilazina en algunos casos pero con valores inferiores a 15 μg·kg−1

    Integral field spectroscopy of selected areas of the Bright Bar and Orion-S cloud in the Orion Nebula

    Full text link
    We present integral field spectroscopy of two selected zones in the Orion Nebula obtained with the Potsdam Multi-Aperture Spectrophotometer (PMAS), covering the optical spectral range from 3500 to 7200 A and with a spatial resolution of 1". The observed zones are located on the prominent Bright Bar and on the brightest area at the northeast of the Orion South cloud, both containing remarkable ionization fronts. We obtain maps of emission line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, which ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [OII] lines used to derive the O+ abundance, and that our nominal values of electron density-derived from the [SII] line ratio-may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of OII in the field at the northeast of the Orion South cloud allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion Nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy.Comment: 15 pages, 10 figures. Accepted for publication in MNRA

    A novel approach for adapting the standard addition method to single particle-ICP-MS for the accurate determination of NP size and number concentration in complex matrices; 35414390

    Get PDF
    This paper presents a novel approach, based on the standard addition method, for overcoming the matrix effects that often hamper the accurate characterization of nanoparticles (NPs) in complex samples via single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). In this approach, calibration of the particle size is performed by two different methods: (i) by spiking a suspension of NPs standards of known size containing the analyte, or (ii) by spiking the sample with ionic standards; either way, the measured sensitivity is used in combination with the transport efficiency (TE) for sizing the NPs. Moreover, such transport efficiency can be readily obtained from the data obtained via both calibration methods mentioned above, so that the particle number concentration can also be determined. The addition of both ionic and NP standards can be performed on-line, by using a T-piece with two inlet lines of different dimensions. The smaller of the two is used for the standards, thus ensuring a constant and minimal sample dilution. As a result of the spiking of the samples, mixed histograms including the signal of the sample and that of the standards are obtained. However, the use of signal deconvolution approaches permits to extract the information, even in cases of signal populations overlapping. For proofing the concept, characterization of a 50 nm AuNPs suspension prepared in three different media (i.e., deionized water, 5% ethanol, and 2.5% tetramethyl ammonium hydroxide-TMAH) was carried out. Accurate results were obtained in all cases, in spite of the matrix effects detected in some media. Overall, the approach proposed offers flexibility, so it can be adapted to different situations, but it might be specially indicated for samples for which the matrix is not fully known and/or dilution is not possible/recommended. © 2022 The Author

    Properties of the ionized gas in HH202. I: Results from integral field spectroscopy with PMAS

    Full text link
    We present results from integral field spectroscopy with the Potsdam multi-Aperture Spectrograph of the head of the Herbig-Haro object HH 202 with a spatial sampling of 1"x1". We have obtained maps of different emission lines, physical conditions --such as electron temperature and density-- and ionic abundances from recombination and collisionally excited lines. We present the first map of the Balmer temperature and of the temperature fluctuation parameter, t^2. We have calculated the t^2 in the plane of the sky, which is substantially smaller than that determined along the line of sight. We have mapped the abundance discrepancy factor of O^{2+}, ADF(O^{2+}), finding its maximum value at the HH 202-S position. We have explored the relations between the ADF(O^{2+}) and the electron density, the Balmer and [O III] temperatures, the ionization degree as well as the t^2 parameter. We do not find clear correlations between these properties and the results seem to support that the ADF and t^2 are independent phenomena. We have found a weak negative correlation between the O^{2+} abundance determined from recombination lines and the temperature, which is the expected behaviour in an ionized nebula, hence it seems that there is not evidence for the presence of super-metal rich droplets in H II regions.Comment: 12 pages, 11 figures. Accepted for publication in MNRA
    corecore