32 research outputs found

    DEVELOPMENT OF CERAMIC MIEC MEMBRANES FOR OXYGEN SEPARATION: APPLICATION IN CATALYTIC INDUSTRIAL PROCESSES

    Full text link
    The present Thesis is focused on the development of ceramic membranes for the production of O2, as well as their use in several industrial applications (e.g. power generation, chemical industry). Different materials such as perovskites (BSCF and LSCF), fluorites (CGO) and composites, different membrane architectures have been considered. Catalytic activation was considered for the optimization of permeation, and for improving the selectivity/yield of chemical reactions. In the chapter dedicated to BSCF, the influence of thickness and the use of porous supports in the permeation was studied. An improvement in the permeation was observed for the thinner membranes. With respect to the porous supports, it was found that they contribute with an additional resistance within the permeation process, reducing the potential improvement when reducing thickness. The conducted tests also allowed to study more in deep the different processes affecting oxygen membranes, as well as defining a permeation model for monolithic and asymmetric membranes. Aiming to improve the surface reactions involved in the oxygen permeation the use of catalytic layers was considered, by means the addition of porous BSCF backbones. The best results were obtained when coating both sides of membranes with catalytic layers. The concept of BSCF activated membranes was also considered for the production of C2H4 by means of the oxidative de-hydrogenation of C2H6, obtaining high C2H4 yields. BSCF membranes presenting tubular geometry were characterized for application such as production of O2 and production of C2H4 by means of oxidative coupling of CH4. LSCF was considered for conducting studies under CO2-containing atmospheres. For both systems it was conducted a complete permeation study with a focus on permeation performance under CO2 environments. Furthermore a study focused on the different substrates was carried out for determining the structure presenting the lower gas diffusion resistance. Despite very good results were obtained for both membrane types, even under CO2 conditions, freeze casted membranes reached higher oxygen fluxes, being optimized with the catalytic activation of membranes. Materials presenting fluorite structure stand out for their stability under reaction conditions or when exposed to CO2 environments. Nevertheless, delivered oxygen fluxes are typically low. Hence, a thin 40 micron-thick CGO-Co membrane activated with Pd nanoparticles was considered for conducting a study on O2 permeation performance, and its behaviour when exposed to CO2 and CH4-containing atmospheres. A good stability was demonstrated, as well as a significant improvement in oxygen permeation when exposed to CH4 environments. Thus, CGO membranes present promising properties for their application in oxyfuel and for the conduction of chemical reactions. Composite materials based on NFO-CTO was carried out. An evaluation of the CTO content and its relation with permeation was conducted, determining that a higher ionic phase ratio in the membrane results in a higher permeation. A composite consisting of 50NFO-50CTO was considered for performing a permeation study under harsh application conditions, with presence of SO2. Despite the significant loss in permeation, the composite material resulted to be stable after a long exposure to SO2. A broad study about the effect of CO2 and SO2 on the oxygen surface reactions was conducted by means of EIS measurements on 60NFO-40CTO electrodes. It was observed a significant effect of SO2 on the surface exchange reactions by promoting the deactivation of the O2 active sites, due to a SO2 adsorption on them. This effect was minimized by activating 60NFO-40CTO backbones with different catalysts, being characterized by EIS under CO2&SO2 conditions. This improvement was later confirmed when performing permeation tests. Permeation was improved notably by reducing membrane thickness, depositing composite membranes on LSCF porous substrates.La presente tesis trata sobre el desarrollo de membranas cerámicas para la producción de O2, así como de su uso en distintas aplicaciones industriales (producción de energía, industria química). Se han considerado distintos tipos de materiales tales como perovskitas (BSCF y LSCF), fluoritas (CGO) y materiales composites, así como distintas arquitecturas de membrana. y activación catalítica para optimizar la permeación y la selectividad/rendimiento en reacciones químicas. Para el BSCF se estudió la influencia del espesor y el uso de soportes porosos en la permeación de O2, con una mejora para las membranas más finas, y también el papel de los soportes porosos, contribuyendo con una resistencia adicional en el proceso de permeación. El estudio permitió también conocer más en profundidad los procesos que afectan a los distintos tipos de membranas, y establecer un modelo de permeación para membranas. Se recurrió a la activación catalítica mediante la adición de capas porosas de BSCF, obteniendo así mejores resultados para las membranas con capas en ambos lados. El concepto de membranas de BSCF activadas superficialmente se consideró también para la producción de C2H4 a partir de la deshidrogenación oxidativa de etano (ODHE), obteniendo rendimientos de C2H4 muy elevados. Membranas de BSCF con geometría tubular fueron caracterizadas para aplicaciones de producción de O2 y C2H4 mediante acoplamiento oxidativo de metano (OCM). Se consideró al LSCF para su uso en aplicaciones con atmósferas conteniendo CO2. Se desarrollaron membranas soportadas en soportes porosos de LSCF mediante tape casting y freeze-casting, realizando completos estudios de permeación, además de estudiar el tipo de soporte poroso ofreciendo menos resistencia a la difusión de los gases. Pese que para ambos tipos de membranas se obtuvieron muy buenos flujos de oxígeno, incluso bajo condiciones de CO2, para el caso de membranas con soporte fabricado mediante freeze-casting se consiguieron mayores valores de permeación, optimizándolos incluso con la activación catalítica. Los materiales con estructura fluorita poseen alta estabilidad bajo condiciones de reacción (atmósferas reductoras) o cuando son expuestos a CO2 (aplicaciones de producción de energía). Sin embargo, los valores de permeación suelen ser muy bajos. Se consideró una membrana de CGO-Co de 40 micras de espesor activada con nanopartículas de Pd para llevar a cabo un estudio de sus propiedades para la producción de O2, su comportamiento en contacto con CO2 y con atmósferas conteniendo CH4. La buena estabilidad demostrada y la mejora sustancial de los flujos de O2 bajo ambientes reductores, hacen que este tipo de materiales posean propiedades prometedoras para aplicaciones de oxicombustión y reacciones químicas. Se realizó un estudio con materiales composites formados por NFO-CTO. Una evaluación del contenido en CTO y su relación con la permeación de O2, resultó en mayores valores para composiciones con mayor contenido en CTO. Un composite consistente en 50NFO-50CTO se consideró para la realización de tests bajo condiciones de oxicombustión, con presencia de SO2. Pese al notable descenso en los flujos de O2, el material resultó ser completamente estable tras una exposición continuada al SO2. Un amplio estudio del efecto del CO2 y del SO2 sobre las reacciones superficiales se realizó mediantes medidas de EIS en electrodos de 60NFO-40CTO, demostrando que el SO2 afecta significativamente a las reacciones superficiales mediante procesos de adsorción competitiva en los centros activos. Se minimizó el efecto del SO2 sobre las reacciones de intercambio superficial al activar las membranas con capas catalíticas porosas de 60NFO-40CTO con distintos catalizadores, confirmando posteriormente esta mejora en tests de permeación en las mismas condiciones. Así mismo, se optimizó notablemente la permeación de las membranas de 60NFO-40CTO reduciendo el espesLa present tesi tracta sobre el desenvolupament de membranes ceràmiques per a la producció d'O2, així com del seu ús en diverses aplicacions industrials (producció d'energia, indústria química). S'han considerat diversos materials tals com perovskites (BSCF i LSCF), fluorites (CGO) i materials composites, així com diferents arquitectures de membrana i l'activació catalítica per a millorar la permeació i la sel·lectivitat/rendiment de les reaccions químiques. Per al BSCF s'estudià la influència de l'espessor i l'ús de suports porosos en la permeació d'O2, amb una millora dels fluxos d'O2 per al cas de les membranes més fines, i també el paper dels suports porosos, els quals contribueixen afegint una resistència al procés de permeació. L'estudi també va permetre conèixer més en profunditat els processos que afecten als diferents tipus de membranes, i establir un model de permeació per a membranes. Es va recórrer a l'activació catalítica mitjançant l'adició de capes poroses de BSCF, obtenint així millors resultats per a les membranes activades a ambdós costats. El concepte de membranes de BSCF activades superficialment es va considerar també per a la producció d'etilè a mitjançant la deshidrogenació oxidativa d'età (ODHE), obtenint rendiments de C2H4 molt elevats. Membranes de BSCF amb geometria tubular van ser caracteritzades per a aplicacions de producció d'O2 i C2H4 mitjançant l'acoplament oxidatiu de metà (OCM). Es va considerar al LSCF per al seu ús en aplicacions amb atmosferes contenint CO2. Així doncs, es van desenvolupar membranes suportades sobre suports porosos de LSCF fabricats per tape càsting i freeze càsting. Es van realitzar estudis complets de permeació per a ambdós casos, a més d'estudiar el tipus de suport porós que ofereix una menor resistència a la difusió dels gasos. Malgrat que es van obtindré molts bons fluxos d'O2 per als dos tipus de membranes, inclús sota condicions amb CO2, per al cas de les membranes amb suport fabricat per freeze càsting es van aconseguir majors valors de permeació, sent inclús optimitzats amb l'activació catalítica. Els materials amb estructura fluorita destaquen per l'alta estabilitat sota condicions de reacció (atmosferes reductores) o quan són exposats a CO2 (aplicacions per a la producció d'energia). Malgrat això, els valors de permeació solen ser molt baixos. Es va considerar una membrana de CGO-Co de 40 micras d'espessor activada amb partícules de Pd per a realitzar un estudi sobre les seues propietats en quant a la producció d'O2, el seu comportament amb el contacte amb CO2 i atmosferes reductores contenint CH4. La bona estabilitat demostrada i una millora substancial dels fluxos d'O2 sota ambients reductors fan que aquest tipus de material presente propietats prometedores per a aplicacions d'oxicombustió i reaccions químiques. Es va realitzar un estudi sobre materials composites formats per NFO-CTO. Es va realitzar una avaluació del contingut en CTO i la relació amb la permeació, observant una millora de la permeació amb un major contingut de CTO. Un composite consistent en 50NFO-40CTO es va considerar per a la realització de tests de permeació en condicions d'oxicombustió amb presència de SO2. Malgrat el notable descens en els fluxos d'O2, el material resultà ser estable després d'una exposició continuada al SO2. Es mesurà l'efecte del CO2 i del SO2 sobre les reaccions superficials fent ús de la tècnica d'EIS en elèctrodes de 60NFO-40CTO. Demostrant que el SO2 afecta significativament a les reaccions superficials degut a una adsorció competitiva O2-SO2 als centres actius. Es minimitzà l'efecte del SO2 sobre les reaccions superficials al activar les membranes amb capes poroses de 60NFO-40CTO amb diferents catalitzadors. Aquestes capes van ser caracteritzades per EIS sota condicions de SO2, confirmant posteriorment la millora al realitzar tests de permeació. S'optimitzà notablement la permeGarcía Fayos, J. (2017). DEVELOPMENT OF CERAMIC MIEC MEMBRANES FOR OXYGEN SEPARATION: APPLICATION IN CATALYTIC INDUSTRIAL PROCESSES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86189TESISPremios Extraordinarios de tesis doctorale

    Separación de oxígeno mediante membranas asimétricas de La0.58Sr0.4Co0.2Fe0.8O3-δ

    Full text link
    [ES] Se ha realizado un estudio en membranas asimétricas de LSCF bajo diferentes condiciones de temperatura, caudal y composición de los gases, en vistas a determinar la influencia de cada una de las variables en la maximización de los flujos de oxígeno. También se ha estudiado el efecto de deposición de capas catalÍticas.[EN] Asymmetric LSCF membranes have been studied in order to determine the influence of several variables on oxygen flux permeation; the following parameters were considered: temperature, and gas composition. Moreover, the catalytic suface activation has also been studied.García Fayos, J. (2012). Separación de oxígeno mediante membranas asimétricas de La0.58Sr0.4Co0.2Fe0.8O3-δ. Universitat Politècnica de València. http://hdl.handle.net/10251/29742Archivo delegad

    Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments

    Full text link
    [EN] Oxygen Transport Membranes (OTMs) present a high potential for being considered in the integration of O-2 supply systems in oxyfuel installations, as well as for the conduction of chemical reactions when operating Catalytic Membrane Reactors (CMRs). Several solutions are being prospected for overcoming the main drawbacks regarding materials stability and membrane performance. A highly stable material such as Ce0.9Gd0.1O1.95(CGO) doped with 2% mol. Co was studied as a 40 mu m-thick CGO supported CGO membrane. This membrane was characterized by studying its performance as oxygen permeation membrane for the production of oxygen under oxyfuel conditions and for the conduction of chemical reactions involving CH4. In order to improve oxygen surface reactions and consequently, the oxygen permeation, the membrane was surface activated with the addition of Pd nanoparticles. A broad characterization consisting of the study of O-2 production under different environments simulating real application conditions was conducted by subjecting the membrane to Ar, CO2 and CH4 environments in the temperature range of 750 to 1000 degrees C. A peak oxygen flux of 7.8 ml.min(-1)cm(-2) was obtained at 1000 degrees C when using a sweep consisting of 75% CH4 in Ar. This flux corresponds to a 16-fold improvement in the O-2 permeation at 1000 degrees C when sweeping with Ar, with an oxygen flux of 0.47 ml.min(-1).cm(-2). An oxygen flux of 1.2 ml.min(-1).cm(-2) was obtained at 1000 degrees C when feeding with pO(2) = 1 atm in feed side. Membrane performance under CO2-containing environments showed a positive effect of CO2 on permeation at 1000-900 degrees C, reaching up to 0.59 ml.min(-1).cm(-2) O-2 at 1000 degrees C. A continuous exposure of CO2 during 48 h at 750 degrees C resulted in a slight J(O-2) increase, with a reversible reduction in performance when returning to clean conditions, thus demonstrating high stability of CGO membranes.Financial support by the Spanish Ministry for Science and Innovation (Project ENE2008-06302) and by the EU through FP7 NASA-OTM Project (NMP3-SL-2009- 228701) is kindly acknowledged.García-Fayos, J.; Sogaard, M.; Kaiser, A.; Serra Alfaro, JM. (2019). Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments. Separation and Purification Technology. 216:58-64. https://doi.org/10.1016/j.seppur.2019.01.068S5864216OECD, Electricity Generation, OECD Publishing.I.E. Agency, CO2 Emissions from Fuel Combustion 2012, OECD Publishing.Yörük, C. R., Trikkel, A., & Kuusik, R. (2016). Prediction of Flue Gas Composition and Comparative Overall Process Evaluation for Air and Oxyfuel Combustion of Estonian Oil Shale, Using Aspen Plus Process Simulation. Energy & Fuels, 30(7), 5893-5900. doi:10.1021/acs.energyfuels.6b00022Perrin, N., Dubettier, R., Lockwood, F., Tranier, J.-P., Bourhy-Weber, C., & Terrien, P. (2015). Oxycombustion for coal power plants: Advantages, solutions and projects. Applied Thermal Engineering, 74, 75-82. doi:10.1016/j.applthermaleng.2014.03.074ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032Waindich, A., Möbius, A., & Müller, M. (2009). Corrosion of Ba1−xSrxCo1−yFeyO3−δ and La0.3Ba0.7Co0.2Fe0.8O3−δ materials for oxygen separating membranes under Oxycoal conditions. Journal of Membrane Science, 337(1-2), 182-187. doi:10.1016/j.memsci.2009.03.041Kaiser, A., Foghmoes, S., Chatzichristodoulou, C., Søgaard, M., Glasscock, J. A., Frandsen, H. L., & Hendriksen, P. V. (2011). Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing. Journal of Membrane Science, 378(1-2), 51-60. doi:10.1016/j.memsci.2010.12.012Lobera, M. P., Serra, J. M., Foghmoes, S. P., Søgaard, M., & Kaiser, A. (2011). On the use of supported ceria membranes for oxyfuel process/syngas production. Journal of Membrane Science, 385-386, 154-161. doi:10.1016/j.memsci.2011.09.031Park, H. J., & Choi, G. M. (2004). Oxygen permeability of gadolinium-doped ceria at high temperature. Journal of the European Ceramic Society, 24(6), 1313-1317. doi:10.1016/s0955-2219(03)00555-7Kharton, V. (2003). Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes. Solid State Ionics, 160(3-4), 247-258. doi:10.1016/s0167-2738(03)00183-8Kagomiya, I., Iijima, T., & Takamura, H. (2006). Oxygen permeability of nanocrystalline Ce0.8Gd0.2O1.9–CoFe2O4 mixed-conductive films. Journal of Membrane Science, 286(1-2), 180-184. doi:10.1016/j.memsci.2006.09.032Wang, B., Yi, J., Winnubst, L., & Chen, C. (2006). Stability and oxygen permeation behavior of Ce0.8Sm0.2O2−δ–La0.8Sr0.2CrO3−δ composite membrane under large oxygen partial pressure gradients. Journal of Membrane Science, 286(1-2), 22-25. doi:10.1016/j.memsci.2006.06.009Yoon, J. S., Yoon, M. Y., Lee, E. J., Moon, J.-W., & Hwang, H. J. (2010). Influence of Ce0.9Gd0.1O2−δ particles on microstructure and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite membrane. Solid State Ionics, 181(29-30), 1387-1393. doi:10.1016/j.ssi.2010.06.056Choi, M.-B., Jeon, S.-Y., Hwang, H.-J., Park, J.-Y., & Song, S.-J. (2010). Composite of Ce0.8Gd0.2O2−δ and GdBaCo2O5+δ as oxygen separation membranes. Solid State Ionics, 181(37-38), 1680-1684. doi:10.1016/j.ssi.2010.09.027Luo, H., Jiang, H., Efimov, K., Liang, F., Wang, H., & Caro, J. (2011). CO2-Tolerant Oxygen-Permeable Fe2O3-Ce0.9Gd0.1O2-δ Dual Phase Membranes. Industrial & Engineering Chemistry Research, 50(23), 13508-13517. doi:10.1021/ie200517tLuo, H., Efimov, K., Jiang, H., Feldhoff, A., Wang, H., & Caro, J. (2010). CO2-Stable and Cobalt-Free Dual-Phase Membrane for Oxygen Separation. Angewandte Chemie International Edition, 50(3), 759-763. doi:10.1002/anie.201003723Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581wDole, H. A. E., & Baranova, E. A. (2016). Ethylene Oxidation in an Oxygen-Deficient Environment: Why Ceria is an Active Support? ChemCatChem, 8(11), 1977-1986. doi:10.1002/cctc.201600142Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212Garcia-Fayos, J., Lobera, M. P., Balaguer, M., & Serra, J. M. (2018). Catalyst Screening for Oxidative Coupling of Methane Integrated in Membrane Reactors. Frontiers in Materials, 5. doi:10.3389/fmats.2018.00031Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030Balaguer, M., García-Fayos, J., Solís, C., & Serra, J. M. (2013). Fast Oxygen Separation Through SO2- and CO2-Stable Dual-Phase Membrane Based on NiFe2O4–Ce0.8Tb0.2O2-δ. Chemistry of Materials, 25(24), 4986-4993. doi:10.1021/cm4034963Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2015). Dual-Phase Oxygen Transport Membranes for Stable Operation in Environments Containing Carbon Dioxide and Sulfur Dioxide. ChemSusChem, 8(24), 4242-4249. doi:10.1002/cssc.201500951Shao, Z., Xiong, G., Dong, H., Yang, W., & Lin, L. (2001). Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Separation and Purification Technology, 25(1-3), 97-116. doi:10.1016/s1383-5866(01)00095-8Yan, A., Liu, B., Dong, Y., Tian, Z., Wang, D., & Cheng, M. (2008). A temperature programmed desorption investigation on the interaction of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxides with CO2 in the absence and presence of H2O and O2. Applied Catalysis B: Environmental, 80(1-2), 24-31. doi:10.1016/j.apcatb.2007.11.007Gaudillere, C., Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze-Cast Bilayered Dual-Phase Membranes. ChemSusChem, 7(9), 2554-2561. doi:10.1002/cssc.201402324Weber, W. H., Hass, K. C., & McBride, J. R. (1993). Raman study ofCeO2: Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B, 48(1), 178-185. doi:10.1103/physrevb.48.178Wang, S., Wang, W., Zuo, J., & Qian, Y. (2001). Study of the Raman spectrum of CeO2 nanometer thin films. Materials Chemistry and Physics, 68(1-3), 246-248. doi:10.1016/s0254-0584(00)00357-6Guo, M., Lu, J., Wu, Y., Wang, Y., & Luo, M. (2011). UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria. Langmuir, 27(7), 3872-3877. doi:10.1021/la200292fMeng, L., Jia, A.-P., Lu, J.-Q., Luo, L.-F., Huang, W.-X., & Luo, M.-F. (2011). Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO2 Catalysts. The Journal of Physical Chemistry C, 115(40), 19789-19796. doi:10.1021/jp2056688Yacou, C., Sunarso, J., Lin, C. X. C., Smart, S., Liu, S., & Diniz da Costa, J. C. (2011). Palladium surface modified La0.6Sr0.4Co0.2Fe0.8O3−δ hollow fibres for oxygen separation. Journal of Membrane Science, 380(1-2), 223-231. doi:10.1016/j.memsci.2011.07.00

    Shaping of 3YSZ porous substrates for oxygen separation membranes

    Full text link
    [EN] In recent years, asymmetric membranes based on mixed ionic-electronic conductors (MIEC) have gained importance in practical gas separations. MIEC ceramic materials show high-energy efficiency and high temperature resistance, which allows direct integration in industrial processes. Thin layers are supported on porous substrates that provide mechanical strength. In the asymmetric membrane manufacture, the control of support porosity and microstructure is crucial. Colloidal processing is an interesting method that allows controlling the final microstructure in both surfaces and bulk, with high reproducibility. Here, the development of asymmetric membranes with a top functional layer made of Ce0.8Gd0.2O1.9/Ni2FeO4 composite is presented and aims to maximize oxygen permeation and membrane robustness. The porous substrate is prepared by slip casting while the functional layers by screen-printing. The effect of pore former volume and particle morphology were studied. The combination of spherical and flake-like PMMA particles enabled to generate open porosity suitable for fast gas transport.Financial funding from the Spanish Government (ENE2014-57651 and SEV-2012-0267 grants) is gratefully acknowledged.Escribano-Quintana, JA.; García-Fayos, J.; Serra Alfaro, JM. (2017). Shaping of 3YSZ porous substrates for oxygen separation membranes. Journal of the European Ceramic Society. 37(16):5223-5231. https://doi.org/10.1016/j.jeurceramsoc.2017.05.032S52235231371

    Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity

    Full text link
    [EN] An original asymmetric tubular membrane for oxygen production applications was manufactured in a two-step process. A 3 mol% Y2O3 stabilized ZrO2 (3YSZ) porous tubular support was manufactured by the freeze-casting technique, offering a hierarchical and radial-oriented porosity of about 15 µm in width, separated by fully densified walls of about 2 µm thick, suggesting low pressure drop and boosted gas transport. The external surface of the support was successively dip-coated to get a Ce0.8Gd0.2O2¿¿ ¿ 5mol%Co (CGO-Co) interlayer of 80 µm in thickness and an outer dense layer of La0.6Sr0.4Co0.2Fe0.8O3¿¿ (LSCF) with a thickness of 30 µm. The whole tubular membrane presents both uniform geometric characteristics and microstructure all along its length. Chemical reactivity between each layer was studied by coupling X-Ray Diffraction (XRD) analysis and Energy Dispersive X-Ray spectroscopy (EDX) mapping at each step of the manufacturing process. Cation interdiffusion between different phases was discarded, confirming the compatibility of this tri-layer asymmetric ceramic membrane for oxygen production purposes. For the first time, a freeze-cast tubular membrane has been evaluated for oxygen permeation, exhibiting a value of 0.31 mL·min¿1·cm¿2 at 1000 °C under air and argon as feed and sweep gases, respectively. Finally, under the same conditions and increasing the oxygen partial pressure to get pure oxygen as feed, the oxygen permeation reached 1.07 mL·min¿1·cm¿2.Funding from the Spanish Government (ENE2014-57651 and SEV-2016-0683 grants) is kindly acknowledged.Gaudillere, CC.; García-Fayos, J.; Plaza-Belda, J.; Serra Alfaro, JM. (2019). Ice-Templating for the Elaboration of Oxygen Permeation Asymmetric Tubular Membrane with Radial Oriented Porosity. Ceramics. 2(2):246-259. https://doi.org/10.3390/ceramics2020020S24625922Hashim, S. S., Mohamed, A. R., & Bhatia, S. (2011). Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renewable and Sustainable Energy Reviews, 15(2), 1284-1293. doi:10.1016/j.rser.2010.10.002Rajesh, S., Pereira, J. R. S., Figueiredo, F. M. L., & Marques, F. M. B. (2014). Performance of Carbonate - LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-δ Composite Cathodes under Carbon Dioxide. Electrochimica Acta, 125, 435-442. doi:10.1016/j.electacta.2014.01.157Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F., & Meulenberg, W. A. (2013). Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. Journal of Membrane Science, 447, 297-305. doi:10.1016/j.memsci.2013.07.030Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Enhancing oxygen permeation through hierarchically-structured perovskite membranes elaborated by freeze-casting. Journal of Materials Chemistry A, 2(11), 3828. doi:10.1039/c3ta14069eDeville, S. (2008). Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Advanced Engineering Materials, 10(3), 155-169. doi:10.1002/adem.200700270Gaudillere, C., Garcia-Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze-Cast Bilayered Dual-Phase Membranes. ChemSusChem, 7(9), 2554-2561. doi:10.1002/cssc.201402324Hong, L., & Chua, W. (2002). Fabrication of a dense La0.2Sr0.8CoO3−δ/CoO composite membrane by utilizing the electroless cobalt plating technique. Journal of Membrane Science, 198(1), 95-108. doi:10.1016/s0376-7388(01)00651-2Middleton, H., Diethelm, S., Ihringer, R., Larrain, D., Sfeir, J., & Van Herle, J. (2004). Co-casting and co-sintering of porous MgO support plates with thin dense perovskite layers of LaSrFeCoO3. Journal of the European Ceramic Society, 24(6), 1083-1086. doi:10.1016/s0955-2219(03)00554-5Lee, T. (1997). Oxygen permeation in dense SrCo0.8Fe0.2O3 − δ membranes: Surface exchange kinetics versus bulk diffusion. Solid State Ionics, 100(1-2), 77-85. doi:10.1016/s0167-2738(97)00257-9Balachandran, U., Dusek, J. T., Maiya, P. S., Ma, B., Mieville, R. L., Kleefisch, M. S., & Udovich, C. A. (1997). Ceramic membrane reactor for converting methane to syngas. Catalysis Today, 36(3), 265-272. doi:10.1016/s0920-5861(96)00229-5Balachandran, U., Dusek, J. T., Mieville, R. L., Poeppel, R. B., Kleefisch, M. S., Pei, S., … Bose, A. C. (1995). Dense ceramic membranes for partial oxidation of methane to syngas. Applied Catalysis A: General, 133(1), 19-29. doi:10.1016/0926-860x(95)00159-xLi, S., Jin, W., Huang, P., Xu, N., Shi, J., & Lin, Y. . (2000). Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation. Journal of Membrane Science, 166(1), 51-61. doi:10.1016/s0376-7388(99)00244-6Liu, Z., Zhang, G., Dong, X., Jiang, W., Jin, W., & Xu, N. (2012). Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process. Journal of Membrane Science, 415-416, 313-319. doi:10.1016/j.memsci.2012.05.011ITO, W., NAGAI, T., & SAKON, T. (2007). Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane. Solid State Ionics, 178(11-12), 809-816. doi:10.1016/j.ssi.2007.02.031Zhu, X., Sun, S., Cong, Y., & Yang, W. (2009). Operation of perovskite membrane under vacuum and elevated pressures for high-purity oxygen production. Journal of Membrane Science, 345(1-2), 47-52. doi:10.1016/j.memsci.2009.08.020Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO–YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428-1434. doi:10.1016/s0167-577x(02)01002-9Moon, Y.-W., Shin, K.-H., Koh, Y.-H., Yook, S.-W., Han, C.-M., & Kim, H.-E. (2012). Novel Ceramic/Camphene-Based Co-Extrusion for Highly Aligned Porous Alumina Ceramic Tubes. Journal of the American Ceramic Society, 95(6), 1803-1806. doi:10.1111/j.1551-2916.2012.05210.xLiu, R., Yuan, J., & Wang, C. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15-16), 3249-3256. doi:10.1016/j.jeurceramsoc.2013.06.005Seuba, J., Leloup, J., Richaud, S., Deville, S., Guizard, C., & Stevenson, A. J. (2017). Fabrication of ice-templated tubes by rotational freezing: Microstructure, strength, and permeability. Journal of the European Ceramic Society, 37(6), 2423-2429. doi:10.1016/j.jeurceramsoc.2017.01.014Knibbe, R., Hjelm, J., Menon, M., Pryds, N., Søgaard, M., Wang, H. J., & Neufeld, K. (2010). Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC. Journal of the American Ceramic Society, 93(9), 2877-2883. doi:10.1111/j.1551-2916.2010.03763.xQiu, L. (2003). Ln1−xSrxCo1−yFeyO3−δ (Ln=Pr, Nd, Gd; x=0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics, 158(1-2), 55-65. doi:10.1016/s0167-2738(02)00757-9ZHOU, X. (2004). Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films. Solid State Ionics, 175(1-4), 19-22. doi:10.1016/j.ssi.2004.09.040Mori, M. (2003). Evaluation of Ni and Ti-doped Y2O3 stabilized ZrO2 cermet as an anode in high-temperature solid oxide fuel cells. Solid State Ionics, 160(1-2), 1-14. doi:10.1016/s0167-2738(03)00144-9Schulze-Küppers, F., Baumann, S., Tietz, F., Bouwmeester, H. J. M., & Meulenberg, W. A. (2014). Towards the fabrication of La0.98−xSrxCo0.2Fe0.8O3−δ perovskite-type oxygen transport membranes. Journal of the European Ceramic Society, 34(15), 3741-3748. doi:10.1016/j.jeurceramsoc.2014.06.012PEREZCOLL, D., NUNEZ, P., ABRANTES, J., FAGG, D., KHARTON, V., & FRADE, J. (2005). Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO. Solid State Ionics, 176(37-38), 2799-2805. doi:10.1016/j.ssi.2005.06.023Baque, L. C., Padmasree, K., Ceniceros Reyes, M. A., Troiani, H., Arce, M. D., Serquis, A., & Soldati, A. (2016). Effect of Cobalt-Doped Electrolyte on the Electrochemical Performance of LSCFO/CGO Interfaces. ECS Transactions, 72(7), 117-121. doi:10.1149/07207.0117ecstBalaguer, M., Solís, C., Roitsch, S., & Serra, J. M. (2014). Engineering microstructure and redox properties in the mixed conductor Ce0.9Pr0.1O2−δ+ Co 2 mol%. Dalton Trans., 43(11), 4305-4312. doi:10.1039/c3dt52167bGaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Oxygen Permeation Improvement under CO2-Rich Environments through Catalytic Activation of Hierarchically Structured Perovskite Membranes. ChemPlusChem, n/a-n/a. doi:10.1002/cplu.201402142Garcia-Fayos, J., Søgaard, M., Kaiser, A., & Serra, J. M. (2019). Oxygen permeation studies in surface Pd-activated asymmetric Ce0.9Gd0.1O1.95 membranes for application in CO2 and CH4 environments. Separation and Purification Technology, 216, 58-64. doi:10.1016/j.seppur.2019.01.068Bouwmeester, H., & Burggraaf, A. (1997). Dense Ceramic Membranes for Oxygen Separation. Handbook of Solid State Electrochemistry. doi:10.1201/9781420049305.ch14Escribano, J. A., García-Fayos, J., & Serra, J. M. (2017). Shaping of 3YSZ porous substrates for oxygen separation membranes. Journal of the European Ceramic Society, 37(16), 5223-5231. doi:10.1016/j.jeurceramsoc.2017.05.032Lobera, M. P., Balaguer, M., García-Fayos, J., & Serra, J. M. (2017). Catalytic Oxide-Ion Conducting Materials for Surface Activation of Ba0.5Sr0.5Co0.8Fe0.2O3-δMembranes. ChemistrySelect, 2(10), 2949-2955. doi:10.1002/slct.20170053

    Progress in Ce(0.8)Gd(0.2)O(2-delta)protective layers for improving the CO(2)stability of Ba0.5Sr0.5Co0.8Fe0.2O3-delta O2-transport membranes

    Full text link
    [EN] Ce0.8Gd0.2O2-delta(CGO) thin films were deposited by radio frequency (RF) magnetron sputtering and deposition temperature was changed in order to optimize the microstructure and transport properties of the obtained films. Afterwards, the films were deposited on Ba0.5Sr0.5Co0.8Fe0.2O3-delta(BSCF) oxygen separation membranes as CO(2)protective layers. Oxygen permeation was finally measured by sweeping both Ar and CO2, and the obtained results were compared with the bare BSCF membrane. It was found that the oxygen permeation of the BSCF is improved by this CGO layer, with a 4-fold improvement in the oxygen permeation flux when using pure CO(2)as the sweep gas at 900 degrees C. Therefore, these CGO protective layers are a promising way for overcoming the limitations of BSCF membranes in CO2-containing environments, associated with surface competitive O-2-CO(2)adsorption and carbonation of Ba at low temperatures.Funding from the Spanish Government (RTI2018-102161, SEV-2016-0683 and IJCI-2017-34110 grants) and Generalitat Valenciana (PROMETEO/2018/006 grant) is kindly acknowledged. The support of the Servicio de Microscopia Electronica of the Universitat Politecnica de Valencia is also acknowledged.Solis Díaz, C.; Balaguer Ramirez, M.; García-Fayos, J.; Palafox, E.; Serra Alfaro, JM. (2020). Progress in Ce(0.8)Gd(0.2)O(2-delta)protective layers for improving the CO(2)stability of Ba0.5Sr0.5Co0.8Fe0.2O3-delta O2-transport membranes. Sustainable Energy & Fuels. 4(7):3747-3752. https://doi.org/10.1039/d0se00324g374737524

    Oxygen transport membranes in a biomass/coal combined strategy for reducing CO2 emissions: Permeation study of selected membranes under different CO2-rich atmospheres

    Full text link
    [EN] This contribution introduces how the integration of biomass as fuel in power plants would balance CO2 emissions and the related role of oxygen transport membranes (OTM) on it. CO2 capture techniques could be introduced to minimize CO2 emissions at the cost of a substantial energy penalty in the overall process. Among the different approaches, the use of pure O2 and/or N2-free oxidation gases for combustion and/or for gasification leads to promising energy efficiencies. Ceramic OTM membranes could be successfully integrated in such thermal processes, which enable to increase the net plant efficiency when CO2 capture is implemented. Further, this work reviews how selected ceramic materials and membrane architectures behave under CO2 containing atmospheres at high temperatures above 700 °C. These conditions have been selected for checking the viability of these membrane compositions and configurations to fit in an oxy-co-gasification process, involving coal and biomass. The tested asymmetric membranes present competitive oxygen fluxes in the range 0.6 1.2 ml min−1 cm−2 when using CO2 as (inlet) sweep gas at 850 °C (optimal membrane operation conditions in oxy-fuel power plant) and stable oxygen production up to 100 h of continuous operation in similar conditions. Specifically, La0.6Sr0.4Co0.2Fe0.8O3−ä and NiFe2O4 Ce0.8Tb0.2O2−ä composite materials showed the best results for oxygen permeation and time stability under CO2-rich atmospheres.Financial support by the Spanish Government (ENE2011-24761 and SEV-2012-0267 grants), by the EU through FP7 GREEN-CC Project (GA 608524), and by the Helmholtz Association of German Research Centers through the Helmholtz Portfolio MEM-BRAIN is gratefully acknowledged.García Fayos, J.; Vert Belenguer, VB.; Balaguer Ramírez, M.; Solis Díaz, C.; Gaudillere, CC.; Serra Alfaro, JM. (2015). Oxygen transport membranes in a biomass/coal combined strategy for reducing CO2 emissions: Permeation study of selected membranes under different CO2-rich atmospheres. Catalysis Today. 257(2):221-228. https://doi.org/10.1016/j.cattod.2015.04.019S221228257

    Electrifying Ba0.5Sr0.5Co0.8Fe0.2O3-δ; for focalized heating in oxygen transport membranes

    Full text link
    [EN] Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources, especially biomass and solar/wind electricity. In the case of pure oxygen production, oxygen transport membranes (OTMs) appear as an alternative technology for the cryogenic distillation of air, the industrially-established process of producing oxygen. Moreover, OTMs could provide oxygen from different sources (air, water, CO2, etc.), and they are more flexible in adapting to current processes, producing oxygen at 700-1000 degrees C. Furthermore, OTMs can be integrated into catalytic membrane reactors, providing new pathways for different processes. The first part of this study was focused on electrification on a traditional OTM material (Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O3(-delta)), imposing different electric currents/voltages along a capillary membrane. Thanks to the emerging Joule effect, the membrane-surface temperature and the associated O-2 permeation flux could be adjusted. Here, the OTM is electrically and locally heated and reaches 900 degrees C on the surface, whereas the surrounding of the membrane was maintained at 650 degrees C The O-2 permeation flux reached for the electrified membranes was similar to 3.7 NmL. min(-1) cm(2), corresponding to the flux obtained with an OTM non-electrified at 900 degrees C. The influence of depositing a porous Ce0.8Tb0.2O2-delta catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures (830 degrees C) were detected at the same imposed electric power. Finally, the electrification concept was demonstrated in a catalytic membrane reactor (CMR) where the oxidative dehydrogenation of ethane (ODHE) was carried out. ODHE reaction is very sensitive to temperature, and here, we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O-2 injection into the reaction can be easily fine-tuned.Financial support by the Spanish Ministry of Science (PID2022-139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AEI/10.13039/501100011033) and with funding from NextGenerationEU (PRTR-C17.I1) within the Planes Complementarios con CCAA (Area of Green Hydrogen and Energy) and it has been carried out in the CSIC Interdisciplinary Thematic Platform (PTI+) Transición Energética Sostenible+ (PTI-TRANSENER+), and the Universitat Politècnica de València (UPV) is gratefully acknowledged. Also, we acknowledge the support of the Servicio de Microscopía Elcectronica of the UPV.Laqdiem-Marin, M.; García-Fayos, J.; Almar-Liante, L.; Carrillo-Del Teso, AJ.; Represa-Bullido, Á.; López Nieto, JM.; Escolástico Rozalén, S.... (2024). Electrifying Ba0.5Sr0.5Co0.8Fe0.2O3-δ; for focalized heating in oxygen transport membranes. Journal of Energy Chemistry. 91:99-110. https://doi.org/10.1016/j.jechem.2023.12.008991109

    New insights into the pathogenesis and transmission of Brucella pinnipedialis: systemic infection in two bottlenose dolphins ( Tursiops truncatus)

    Get PDF
    The emergence of Brucella infections in marine mammals is a growing concern. The present study reports two cases of systemic Brucella pinnipedialis infection detected in bottlenose dolphins (Tursiops truncatus) pair stranded together in the Cantabrian coast of Spain. Both animals showed systemic lesions associated with the Brucella infection, more severe in the younger dolphin, considered the likely offspring of the other individual. Real-time PCR, bacterial culture, and whole-genome sequencing were used to detect and characterize the Brucella strains involved in both dolphins. The phylogenetic analysis performed on the Brucella genomes retrieved revealed that the species involved was B. pinnipedialis (ST25). Both animals resulted seropositive in a commercial multispecies blocking ELISA but tested negative in the standard Rose Bengal test. To the best of our knowledge, this is the first report of a systemic infection resulting in various lesions associated with Brucella pinnipedialis (ST25) in two bottlenose dolphins. It is also the initial isolation of Brucella in the milk of a non-pregnant or non-aborting female cetacean likely stranded with its offspring. These findings provide new insights into the epidemiology and clinical impact of B. pinnipedialis infection in cetaceans and underscore the importance of continued diagnostic surveillance to gain better understanding of brucellosis effects and transmission in marine mammal populations.Este trabajo ha contado con el apoyo de un convenio de colaboración entre la Fundación Oceanogràfic (Valencia), la Consejería de Medio Rural, Ganadería, Pesca, Alimentación y Medio Ambiente del Gobierno de Cantabria y el Centro de Vigilancia Sanitaria Veterinaria (VISAVET) de la Universidad Complutense de Madrid. Este convenio permite la recogida de muestras de cadáveres de cetáceos varados y aporta fondos para la realización de estudios post-mortem. Ignacio Vargas-Castro es beneficiario de una beca FPU del Ministerio de Ciencia, Innovación y Universidades. El trabajo del CITA fue apoyado por el Gobierno de Aragón (Grupo de Investigación A21_23R). André E. Moura recibió el apoyo del Centro Nacional de Ciencia de Polonia (beca de investigación Sonata 2018/31/D/NZ8/02835) y de la Agencia Nacional Polaca de Intercambio Académico (programa NAWA Ulam PPN/ ULM/2019/1/00162).milkBrucella pinnipedialisbottlenose dolphinmarine mammalssystemic infectionhealth surveillancetransmissionwhole-genome sequencingPublishe
    corecore