67 research outputs found

    Sunitinib in the treatment of gastrointestinal stromal tumor: patient selection and perspectives

    Get PDF
    Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. In advanced setting and after progression to imatinib, the multi-targeted receptor tyrosine kinase inhibitor sunitinib has clearly demonstrated a clinical benefit in terms of response rate and progression-free survival with an acceptable toxicity profile. The recommended schedule for sunitinib administration is 50 mg per day 4 weeks ON and 2 weeks OFF; however, potential alternative schedules are also reviewed in the present article. Several biomarkers have been explored to better select candidates for sunitinib therapy, such as the value of early changes in standardized uptake value assessed by positron emission tomography with F-18-fluorodeoxyglucose, circulating biomarkers, clinical biomarkers such as the appearance of arterial hypertension during treatment that correlates with better outcomes, and the GIST genotype. GISTs with KIT mutations at exon 9 and the so-called wild-type GISTs seem to better respond to sunitinib. Nonetheless, further investigation is required to confirm these findings as well as to understand the mechanisms of sunitinib resistance such as the development of new KIT mutations or conformational changes in KIT receptor

    Interaction effects and energy barrier distribution on the magnetic relaxation of nanocrystalline hexagonal ferrites

    Get PDF
    The static and dynamic magnetic properties of nanocrystalline BaFe10.4Co0.8Ti0.8O19 M-type doped barium ferrite were studied in detail to clarify the effect of interactions on the magnetic relaxation of an assembly of small particles. The logarithmic approximation was unable to account for the magnetic relaxation of the sample. Interaction effects were analyzed from the low-field susceptibility, DM plots and the time dependence of thermoremanence, indicating that demagnetizing interactions led to an enhancement of both the relaxation rate at low temperatures and the amount of the lowest energy barriers. It is thus suggested that care should be taken when analyzing thermoremanent data at low temperature, in order not to confuse these experimental findings with the signature of macroscopic quantum tunneling

    Caveolin-1 in sarcomas: friend or foe?

    Get PDF
    Sarcomas represent a heterogeneous group of tumors with a complex and difficult reproducible classification. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. Caveolin-1 is a multifunctional scaffolding protein with multiple binding partners that regulates multiple cancer-associated processes including cellular transformation, tumor growth, cell death and survival, multidrug resistance, angiogenesis, cell migration and metastasis. However, ambiguous roles have been ascribed to caveolin-1 in signal transduction and cancer, including sarcomas. In particular, evidence indicating that caveolin-1 function is cell context dependent has been repeatedly reported. Caveolin-1 appears to act as a tumor suppressor protein at early stages of cancer progression. In contrast, a growing body of evidence indicates that caveolin-1 is up-regulated in several multidrug-resistant and metastatic cancer cell lines and human tumor specimens. This review is focused on the role of caveolin-1 in several soft tissue and bone sarcomas and discusses the use of this protein as a potential diagnostic and prognostic marker and as a therapeutic target

    Optimization of the therapeutic approach to patients with sarcoma: Delphi Consensus

    Get PDF
    Delphi consensus; Sarcoma treatment; Panel of expertsConsenso Delphi; Tratamiento del sarcoma; Panel de expertosConsens Delphi; Tractament del sarcoma; Panell d'expertsSoft tissue sarcomas (STS) constitute a heterogeneous group of rare solid tumors associated with significant morbidity and mortality. The evaluation and treatment of STS require a multidisciplinary team with extensive experience in the management of these types of tumors. National and international clinical practice guidelines for STS do not always provide answers to a great many situations that specialists have to contend with in their everyday practice. This consensus provides a series of specific recommendations based on available scientific evidence and the experience of a group of experts to assist in decision-making by all the specialists involved in the management of STS

    Bcl-xL inhibition enhances Dinaciclib-induced cell death in soft-tissue sarcomas

    Full text link
    Soft-tissue sarcomas (STS) are an uncommon and heterogeneous group of malignancies that result in high mortality. Metastatic STS have very bad prognosis due to the lack of effective treatments. Dinaciclib is a model drug for the family of CDK inhibitors. Its main targets are cell cycle regulator CDK1 and protein synthesis controller CDK9. We present data supporting Dinaciclib ability to inactivate in vitro different STS models at nanomolar concentrations. Moreover, the different rhythms of cell death induction allow us to further study into the mechanism of action of the drug. Cell death was found to respond to the mitochondrial pathway of apoptosis. Anti-apoptotic Bcl-xL was identified as the key regulator of this process. Already natural low levels of pro-apoptotic proteins BIM and PUMA in tolerant cell lines were insufficient to inhibit Bcl-xL as this anti-apoptotic protein showed a slow decay curve after Dinaciclib-induced protein synthesis disruption. Combination of Dinaciclib with BH3-mimetics led to quick and massive apoptosis induction in vitro, but in vivo assessment was prevented due to liver toxicity. Additionally, Bcl-xL inhibitor A-1331852 also synergized with conventional chemotherapy drugs as Gemcitabine. Thus, Bcl-xL targeted therapy arises as a major opportunity to the treatment of STS

    Crucial Role of the Co Cations on the Destabilization of the Ferrimagnetic Alignment in Co-Ferrite Nanoparticles with Tunable Structural Defects

    Full text link
    The key role of the structural defects on the magnetic properties of cobalt ferrite nanoparticles (NPs) is investigated by complementary local probes: element- and site-specific X-ray magnetic circular dichroism (XMCD) combined with high-resolution transmission electron microscopy of individual NPs. A series of monodisperse samples of 8 nm NPs with a tunable amount of structural defects were prepared by thermal decomposition of Fe(III) and Co(II) acetylacetonates in the presence of a variable concentration of 1,2-hexadecanediol. The particles show a partial inverse spinel structure, and their stoichiometry and cation distribution are comparable along the series. Element-specific XMCD hysteresis loops at all the cationic sites show a decrease in squareness and an increase in both the closure field and the high-field susceptibility as the NPs become more structurally defective, suggesting the progressive loss of the collinear ferrimagnetism. However, the Co2+ cations in octahedral sites are significantly more affected by the structural defects than the rest of the cations. This is because structural defects cause local distortions of the crystal field acting on the orbital component of the cations, yielding effective local anisotropy axes that cause a prevalent Co2+ spin canting through the spin–orbit coupling, owing to the relatively large value of the partially unquenched moment of these cations, as found by XMCD. All in all, our results emphasize the crucial role of the Co2+ cations on the destabilization of the collinear ferrimagnetism with the inclusion of structural defects in cobalt ferrite NPs

    Driving Magnetic Domains at the Nanoscale by Interfacial Strain-induced Proximity

    Full text link
    We investigate the local nanoscale changes of the magnetic anisotropy of a Ni film subject to an inverse magnetostrictive effect by proximity to a V2O3 layer. Using temperature-dependent photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism (XMCD), direct images of the Ni spin alignment across the first-order structural phase transition (SPT) of V2O3 were obtained. We find an abrupt temperature-driven reorientation of the Ni magnetic domains across the SPT, which is associated with a large increase of the coercive field. Moreover, angular dependent ferromagnetic resonance (FMR) shows a remarkable change in the magnetic anisotropy of the Ni film across the SPT of V2O3. Micromagnetic simulations based on these results are in quantitative agreement with the PEEM data. Direct measurements of the lateral correlation length of the Ni domains from XMCD images show an increase of almost one order of magnitude at the SPT compared to room temperature, as well as a broad spatial distribution of the local transition temperatures, thus corroborating the phase coexistence of Ni anisotropies caused by the V2O3 SPT. We show that the rearrangement of the Ni domains is due to strain induced by the oxide layers' structural domains across the SPT. Our results illustrate the use of alternative hybrid systems to manipulate magnetic domains at the nanoscale, which allows for engineering of coercive fields for novel data storage architectures

    SEOM clinical guideline for treatment of kidney cancer (2017)

    Get PDF
    The goal of this article is to provide recommendations about the management of kidney cancer. Based on pathologic and molecular features, several kidney cancer variants were described. Nephron-sparing techniques are the gold standard of localized disease. After a randomized trial, sunitinib could be considered in adjuvant treatment in high-risk patients. Patients with advanced disease constitute a heterogeneous population. Prognostic classification should be considered. Both sunitinib and pazopanib are the standard options for first-line systemic therapy in advanced renal cell carcinoma. Based on the results of two randomized trials, both nivolumab and cabozantinib should be considered the standard for second and further lines of therapy. Response evaluation for present therapies is a challenge

    Phase II randomized study of Plitidepsin (Aplidin), alone or in association with L-carnitine, in patients with unresectable advanced renal cell carcinoma

    Get PDF
    This randomized phase II study evaluated two schedules of the marine compound Plitidepsin with or without co-administration of L-carnitine in patients with renal cell carcinoma. Patients had adequate performance status and organ function.The primary endpoint was the rate of disease control (no progression) at 12 weeks (RECIST).Other endpoints included the response rate and time dependent efficacy measures.The trial also assessed the efficacy of L-carnitine to prevent Plitidepsin-related toxicity. The two regimes given as 24 hour infusion every two weeks showed hints of antitumoral activity. Disease control at 12 weeks was 15.8% in Arm A (5mg/m2, no L-carnitine) and 11,1% in Arm B (7mg/m2 with L-carnitine). Two partial responses were observed in Arm A (19 patients), none in Arm B (20 patients). Both schedules had the same progression-free interval (2.1 months).The median overall survival was 7.0 and 7.6 months.The safety profile was similar in both arms of the trial and adverse events were mainly mild to moderate (NCI CTC version 2.0). Increasing the dose to 7mg/m2 did not increase the treatment efficacy but the incidence of transaminase and CPK elevations and serious AEs. Coadministration of L-carnitine did not prevent muscular toxicity or CPK-elevation associated with Plitidepsin

    Identification Of Actionable Genetic Targets In Primary Cardiac Sarcomas

    Get PDF
    Background: Primary cardiac tumors are extremely rare; most are myxomas with a benign prognosis. However, primary sarcomas are highly aggressive and treatment options are limited. Radical surgery is often not feasible and conventional therapies provide only modest results. Due to the rare nature of primary cardiac tumors, there are no proper randomized studies to guide treatment. Their complexity requires alternative approaches in order to improve treatment efficacy. Methods: We isolated DNA from 5 primary cardiac sarcomas; the quality of DNA from 3 of them was sufficient to perform high-resolution single nucleotide polymorphism (SNP) array analysis. Results: In the present study, molecular karyotyping revealed numerous segmental chromosomal alterations and amplifications affecting actionable genes that may be involved in disease initiation and/or progression. These include chromosomal break flanking AKT2 in undifferentiated pleomorphic rhabdomyosarcoma, chromosomal break in promoter of TERT, and gain of CDK4 and amplification of MDM2 in inflammatory myofibroblastic tumor. We detected segmental break flanking MOS in high-grade myxofibrosarcoma. In addition, the high number of chromosomal aberrations in high-grade myxofibrosarcoma may cause multiple tumor-specific epitopes, supporting the study of immunotherapy treatment in this type of aggressive tumor. Conclusion: Our results provide a genetic rationale that supports an alternative, personalized therapeutic management of primary cardiac sarcomas
    • 

    corecore