14,993 research outputs found

    Interaction Effects on the Magneto-optical Response of Magnetoplasmonic Dimers

    Get PDF
    The effect that dipole-dipole interactions have on the magneto-optical (MO) properties of magnetoplasmonic dimers is theoretically studied. The specific plasmonic versus magnetoplasmonic nature of the dimer's metallic components and their specific location within the dimer plays a crucial role on the determination of these properties. We find that it is possible to generate an induced MO activity in a purely plasmonic component, even larger than that of the MO one, therefore dominating the overall MO spectral dependence of the system. Adequate stacking of these components may allow obtaining, for specific spectral regions, larger MO activities in systems with reduced amount of MO metal and therefore with lower optical losses. Theoretical results are contrasted and confirmed with experiments for selected structures

    Optical bistability in subwavelength apertures containing nonlinear media

    Full text link
    We develop a self-consistent method to study the optical response of metallic gratings with nonlinear media embedded within their subwavelength slits. An optical Kerr nonlinearity is considered. Due to the large E-fields associated with the excitation of the transmission resonances appearing in this type of structures, moderate incoming fluxes result in drastic changes in the transmission spectra. Importantly, optical bistability is obtained for certain ranges of both flux and wavelength.Comment: 4 pages, 4 figure

    A Meiotic Checkpoint Alters Repair Partner Bias to Permit Inter-sister Repair of Persistent DSBs

    Get PDF
    Accurate meiotic chromosome segregation critically depends on the formation of inter-homolog crossovers initiated by double-strand breaks (DSBs). Inaccuracies in this process can drive aneuploidy and developmental defects, but how meiotic cells are protected from unscheduled DNA breaks remains unexplored. Here we define a checkpoint response to persistent meiotic DSBs in C. elegans that phosphorylates the synaptonemal complex (SC) to switch repair partner from the homolog to the sister chromatid. A key target of this response is the core SC component SYP-1, which is phosphorylated in response to ionizing radiation (IR) or unrepaired meiotic DSBs. Failure to phosphorylate (syp-16A) or dephosphorylate (syp-16D) SYP-1 in response to DNA damage results in chromosome non-dysjunction, hyper-sensitivity to IR-induced DSBs, and synthetic lethality with loss of brc-1BRCA1. Since BRC-1 is required for inter-sister repair, these observations reveal that checkpoint-dependent SYP-1 phosphorylation safeguards the germline against persistent meiotic DSBs by channelling repair to the sister chromatid.Cancer Research UK FC0010048UK Medical Research Council FC0010048Wellcome Trust FC0010048Ministerio de EconomĂ­a y Competitividad BFU2016-75058-PEuropean Research Council ERC2014 AdG669898 TARLOO

    Screening of nuclear pairing in nuclear and neutron matter

    Full text link
    The screening potential in the 1S0^1S_0 and 3S1^3S_1 pairing channels in neutron and nuclear matter in different approximations is discussed. It is found that the vertex corrections to the potential are much stronger in nuclear matter than in neutron matter.Comment: 11 pages, 8 figures, revtex4 styl

    Applying clustering based on rules on WHO-DAS II for knowledge discovery on functional disabilities

    Get PDF
    The senior citizens represent a fast growing proportion of the population in Europe and other developed areas. This increases the proportion of persons with disability and reducing quality of life. The concept of disability itself is not always precise and quantifiable. To improve agreement on the concept of disability, the World Health Organization (WHO) developed a clinical test WHO Disability Assessment Schedule, (WHO-DASII) that is understood to include physical, mental, and social well-being, as a generic measure of functioning. From the medical point of view, the purpose of this work is to extract knowledge on the performance of the test WHO-DASII on the basis of a sample of neurological patients from an Italian hospital. This Knowledge Discovery problem has been faced by using clustering based on rules, a technique stablished on 1994 by Gibert which combines some Inductive Learning (from AI) methods with Statistics to extract knowledge on ill-structured domains (that is complex domains where consensus is not achieved, like is the case). So, in this paper, the results of applying this technique to the WHO-DASII results is presented.Postprint (published version

    Solving quantum master equations in phase space by continued-fraction methods

    Full text link
    Inspired on the continued-fraction technique to solve the classical Fokker--Planck equation, we develop continued-fraction methods to solve quantum master equations in phase space (Wigner representation of the density matrix). The approach allows to study several classes of nonlinear quantum systems subjected to environmental effects (fluctuations and dissipation), with the only limitations that the starting master equations may have. We illustrate the method with the canonical problem of quantum Brownian motion in periodic potentials.Comment: 7 pages, 3 figure

    InAs/InP single quantum wire formation and emission at 1.5 microns

    Get PDF
    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 microns. Additional sharp features are related to monolayer fluctuations of the two dimensional InAs layer present during the early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter
    • …
    corecore