48,185 research outputs found

    Finite size corrections to the blackbody radiation laws

    Full text link
    We investigate the radiation of a blackbody in a cavity of finite size. For a given geometry, we use semiclassical techniques to obtain explicit expressions of the modified Planck's and Stefan-Boltzmann's blackbody radiation laws as a function of the size and shape of the cavity. We determine the range of parameters (temperature, size and shape of the cavity) for which these effects are accessible to experimental verification. Finally we discuss potential applications of our findings in the physics of the cosmic microwave background and sonoluminescence.Comment: 5 pages, 1 figure, journal versio

    Enhancement of the critical temperature in iron-pnictide superconductors by finite size effects

    Full text link
    Recent experiments have shown that, in agreement with previous theoretical predictions, superconductivity in metallic nanostructures can be enhanced with respect to the bulk limit. Motivated by these results we study finite size effects (FSE) in an iron-pnictide superconductor. For realistic values of the bulk critical temperature Tc ~ 20-50K, we find that, in the nanoscale region L ~ 10 nm, Tc(L) has a complicated oscillating pattern as a function of the system size L. A substantial enhancement of Tc with respect to the bulk limit is observed for different boundary conditions, geometries and two microscopic models of superconductivity. Thermal fluctuations, which break long range order, are still small in this region. Finally we show that the differential conductance, an experimental observable, is also very sensitive to FSE.Comment: 4 pages, 3 figure

    Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis

    Full text link
    A number of extragalactic jets show periodic structures at different scales that can be associated with growing instabilities. The wavelengths of the developing instability modes and their ratios depend on the flow parameters, so the study of those structures can shed light on jet physics at the scales involved. In this work, we use the fits to the jet ridgeline obtained from different observations of S5 B0836++710 and apply stability analysis of relativistic, sheared flows to derive an estimate of the physical parameters of the jet. Based on the assumption that the observed structures are generated by growing Kelvin-Helmholtz (KH) instability modes, we have run numerical calculations of stability of a relativistic, sheared jet over a range of different jet parameters. We have spanned several orders of magnitude in jet-to-ambient medium density ratio, and jet internal energy, and checked different values of the Lorentz factor and shear layer width. This represents an independent method to obtain estimates of the physical parameters of a jet. By comparing the fastest growing wavelengths of each relevant mode given by the calculations with the observed wavelengths reported in the literature, we have derived independent estimates of the jet Lorentz factor, specific internal energy, jet-to-ambient medium density ratio and Mach number. We obtain a jet Lorentz factor γ≃12\gamma \simeq 12, specific internal energy of Δ≃10−2 c2\varepsilon \simeq 10^{-2}\,c^2, jet-to-ambient medium density ratio of η≈10−3\eta\approx 10^{-3}, and an internal (classical) jet Mach number of Mj≈12M_\mathrm{j}\approx 12. We also find that the wavelength ratios are better recovered by a transversal structure with a width of ≃10 %\simeq 10\,\% of the jet radius. This method represents a powerful tool to derive the jet parameters in all jets showing helical patterns with different wavelengths.Comment: Accepted for publication in A&A, 15 pages, 12 figure

    Optimality of programmable quantum measurements

    Full text link
    We prove that for a programmable measurement device that approximates every POVM with an error ≀Ύ\le \delta, the dimension of the program space has to grow at least polynomially with 1ÎŽ\frac{1}{\delta}. In the case of qubits we can improve the general result by showing a linear growth. This proves the optimality of the programmable measurement devices recently designed in [G. M. D'Ariano and P. Perinotti, Phys. Rev. Lett. \textbf{94}, 090401 (2005)]

    From Perturbation Theory to Confinement: How the String Tension is built up

    Full text link
    We study the spatial volume dependence of electric flux energies for SU(2) Yang-Mills fields on the torus with twisted boundary conditions. The results approach smoothly the rotational invariant Confinement regime. The would-be string tension is very close to the infinite volume result already for volumes of (1.2 fm.)3(1.2 \ {\rm fm.})^3. We speculate on the consequences of our result for the Confinement mechanism.Comment: 6p, ps-file (uuencoded). Contribution to Lattice'93 Conference (Dallas, 1993). Preprint INLO-PUB 18/93, FTUAM-93/4

    Instanton classical solutions of SU(3) fixed point actions on open lattices

    Get PDF
    We construct instanton-like classical solutions of the fixed point action of a suitable renormalization group transformation for the SU(3) lattice gauge theory. The problem of the non-existence of one-instantons on a lattice with periodic boundary conditions is circumvented by working on open lattices. We consider instanton solutions for values of the size (0.6-1.9 in lattice units) which are relevant when studying the SU(3) topology on coarse lattices using fixed point actions. We show how these instanton configurations on open lattices can be taken into account when determining a few-couplings parametrization of the fixed point action.Comment: 23 pages, LaTeX, 4 eps figures, epsfig.sty; some comments adde
    • 

    corecore