Recent experiments have shown that, in agreement with previous theoretical
predictions, superconductivity in metallic nanostructures can be enhanced with
respect to the bulk limit. Motivated by these results we study finite size
effects (FSE) in an iron-pnictide superconductor. For realistic values of the
bulk critical temperature Tc ~ 20-50K, we find that, in the nanoscale region L
~ 10 nm, Tc(L) has a complicated oscillating pattern as a function of the
system size L. A substantial enhancement of Tc with respect to the bulk limit
is observed for different boundary conditions, geometries and two microscopic
models of superconductivity. Thermal fluctuations, which break long range
order, are still small in this region. Finally we show that the differential
conductance, an experimental observable, is also very sensitive to FSE.Comment: 4 pages, 3 figure