2 research outputs found

    Controlled Rate Thermal Analysis (CRTA) as New Method to Control the Specific Surface in Hydroxyapatite Thin Coatings

    Get PDF
    The control of the texture in synthetic hydroxyapatite ceramics had limited their application in the field of the materials for bone implantation, even more when it is used as a filling in cements and other formulations in orthopedic surgery. The present article shows preliminary results demonstrating the effectiveness of a modification of the controlled rate thermal analysis (CRTA), developed by J. Rouquerol, used for the preparation of ceramic materials with controlled textural characteristics, during the formation of ceramic powders of synthetic hydroxyapatite at low temperatures. The thermal treatments of the hydroxyapatite were carried out in a device connected to a computer, to control temperature and pressure system, keeping the decomposition speed constant. Results, reported when preparing ceramic powders of hydroxyapatite at 300 and 850°C under controlled pressure, using synthetic hydroxyapatite with a Ca/P molar ratio equal to 1.64, were checked using IR spectroscopy and X‐ray diffraction, showed that the formed phase corresponds to that of crystalline hydroxyapatite, even at 300°C of maximum temperature. Values of specific surface (BET) between 17 and 66 m2/g, with pore size in the range of 50–300 Å in both cases are obtained by N2 absorption isotherms, when analyzing the isotherms of nitrogen absorption
    corecore