43,812 research outputs found

    Optimality of programmable quantum measurements

    Full text link
    We prove that for a programmable measurement device that approximates every POVM with an error ≀Ύ\le \delta, the dimension of the program space has to grow at least polynomially with 1ÎŽ\frac{1}{\delta}. In the case of qubits we can improve the general result by showing a linear growth. This proves the optimality of the programmable measurement devices recently designed in [G. M. D'Ariano and P. Perinotti, Phys. Rev. Lett. \textbf{94}, 090401 (2005)]

    Modeling dust emission in PN IC 418

    Full text link
    We investigated the infrared (IR) dust emission from PN IC 418, using a detailed model controlled by a previous determination of the stellar properties and the characteristics of the photoionized nebula, keeping as free parameters the dust types, amounts and distributions relative to the distance of the central star. The model includes the ionized region and the neutral region beyond the recombination front (Photodissociation region, or PDR), where the [OI] and [CII] IR lines are formed. We succeeded in reproducing the observed infrared emission from 2 to 200~\mm. The global energy budget is fitted by summing up contributions from big grains of amorphous carbon located in the neutral region and small graphite grains located in the ionized region (closer to the central star). Two emission features seen at 11.5 and 30~\mm are also reproduced by assuming them to be due to silicon carbide (SiC) and magnesium and iron sulfides (Mgx_xFe1−x_{1-x}S), respectively. For this, we needed to consider ellipsoidal shapes for the grains to reproduce the wavelength distribution of the features. Some elements are depleted in the gaseous phase: Mg, Si, and S have sub-solar abundances (-0.5 dex below solar by mass), while the abundance of C+N+O+Ne by mass is close to solar. Adding the abundances of the elements present in the dusty and gaseous forms leads to values closer to but not higher than solar, confirming that the identification of the feature carriers is plausible. Iron is strongly depleted (3 dex below solar) and the small amount present in dust in our model is far from being enough to recover the solar value. A remaining feature is found as a residue of the fitting process, between 12 and 25~\mm, for which we do not have identification.Comment: Accepted for publication in Astronomy & Astrophysics. V2: adding reference

    Enhancement of the critical temperature in iron-pnictide superconductors by finite size effects

    Full text link
    Recent experiments have shown that, in agreement with previous theoretical predictions, superconductivity in metallic nanostructures can be enhanced with respect to the bulk limit. Motivated by these results we study finite size effects (FSE) in an iron-pnictide superconductor. For realistic values of the bulk critical temperature Tc ~ 20-50K, we find that, in the nanoscale region L ~ 10 nm, Tc(L) has a complicated oscillating pattern as a function of the system size L. A substantial enhancement of Tc with respect to the bulk limit is observed for different boundary conditions, geometries and two microscopic models of superconductivity. Thermal fluctuations, which break long range order, are still small in this region. Finally we show that the differential conductance, an experimental observable, is also very sensitive to FSE.Comment: 4 pages, 3 figure

    Explosion models for thermonuclear supernovae resulting from different ignition conditions

    Full text link
    We have explored in three dimensions the fate of a massive white dwarf as a function of different initial locations of carbon ignition, with the aid of a SPH code. The calculated models cover a variety of possibilities ranging from the simultaneous ignition of the central volume of the star to the off-center ignition in multiple scattered spots. In the former case, there are discussed the possibility of a transition to a detonation when the mean density of the nuclear flame decreases below 2x10**7 g cm**-3, and its consequences. In the last case, the dependence of the results on the number of initial igniting spots and the chance of some of these models to evolve to the pulsating delayed detonation scenario are also outlined.Comment: 5 pages, 1 figure, proceedings of IAU Colloquium 192, 'Supernovae (10 years of SN1993J)', 22-26 April 2003, Valencia, Spai
    • 

    corecore