49,242 research outputs found
Finite size corrections to the blackbody radiation laws
We investigate the radiation of a blackbody in a cavity of finite size. For a
given geometry, we use semiclassical techniques to obtain explicit expressions
of the modified Planck's and Stefan-Boltzmann's blackbody radiation laws as a
function of the size and shape of the cavity. We determine the range of
parameters (temperature, size and shape of the cavity) for which these effects
are accessible to experimental verification. Finally we discuss potential
applications of our findings in the physics of the cosmic microwave background
and sonoluminescence.Comment: 5 pages, 1 figure, journal versio
Enhancement of the critical temperature in iron-pnictide superconductors by finite size effects
Recent experiments have shown that, in agreement with previous theoretical
predictions, superconductivity in metallic nanostructures can be enhanced with
respect to the bulk limit. Motivated by these results we study finite size
effects (FSE) in an iron-pnictide superconductor. For realistic values of the
bulk critical temperature Tc ~ 20-50K, we find that, in the nanoscale region L
~ 10 nm, Tc(L) has a complicated oscillating pattern as a function of the
system size L. A substantial enhancement of Tc with respect to the bulk limit
is observed for different boundary conditions, geometries and two microscopic
models of superconductivity. Thermal fluctuations, which break long range
order, are still small in this region. Finally we show that the differential
conductance, an experimental observable, is also very sensitive to FSE.Comment: 4 pages, 3 figure
Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis
A number of extragalactic jets show periodic structures at different scales
that can be associated with growing instabilities. The wavelengths of the
developing instability modes and their ratios depend on the flow parameters, so
the study of those structures can shed light on jet physics at the scales
involved. In this work, we use the fits to the jet ridgeline obtained from
different observations of S5 B0836710 and apply stability analysis of
relativistic, sheared flows to derive an estimate of the physical parameters of
the jet. Based on the assumption that the observed structures are generated by
growing Kelvin-Helmholtz (KH) instability modes, we have run numerical
calculations of stability of a relativistic, sheared jet over a range of
different jet parameters. We have spanned several orders of magnitude in
jet-to-ambient medium density ratio, and jet internal energy, and checked
different values of the Lorentz factor and shear layer width. This represents
an independent method to obtain estimates of the physical parameters of a jet.
By comparing the fastest growing wavelengths of each relevant mode given by the
calculations with the observed wavelengths reported in the literature, we have
derived independent estimates of the jet Lorentz factor, specific internal
energy, jet-to-ambient medium density ratio and Mach number. We obtain a jet
Lorentz factor , specific internal energy of , jet-to-ambient medium density ratio of , and an internal (classical) jet Mach number of . We also find that the wavelength ratios are better recovered by a
transversal structure with a width of of the jet radius. This
method represents a powerful tool to derive the jet parameters in all jets
showing helical patterns with different wavelengths.Comment: Accepted for publication in A&A, 15 pages, 12 figure
Optimality of programmable quantum measurements
We prove that for a programmable measurement device that approximates every
POVM with an error , the dimension of the program space has to grow
at least polynomially with . In the case of qubits we can
improve the general result by showing a linear growth. This proves the
optimality of the programmable measurement devices recently designed in [G. M.
D'Ariano and P. Perinotti, Phys. Rev. Lett. \textbf{94}, 090401 (2005)]
From Perturbation Theory to Confinement: How the String Tension is built up
We study the spatial volume dependence of electric flux energies for SU(2)
Yang-Mills fields on the torus with twisted boundary conditions. The results
approach smoothly the rotational invariant Confinement regime. The would-be
string tension is very close to the infinite volume result already for volumes
of . We speculate on the consequences of our result for
the Confinement mechanism.Comment: 6p, ps-file (uuencoded). Contribution to Lattice'93 Conference
(Dallas, 1993). Preprint INLO-PUB 18/93, FTUAM-93/4
Instanton classical solutions of SU(3) fixed point actions on open lattices
We construct instanton-like classical solutions of the fixed point action of
a suitable renormalization group transformation for the SU(3) lattice gauge
theory. The problem of the non-existence of one-instantons on a lattice with
periodic boundary conditions is circumvented by working on open lattices. We
consider instanton solutions for values of the size (0.6-1.9 in lattice units)
which are relevant when studying the SU(3) topology on coarse lattices using
fixed point actions. We show how these instanton configurations on open
lattices can be taken into account when determining a few-couplings
parametrization of the fixed point action.Comment: 23 pages, LaTeX, 4 eps figures, epsfig.sty; some comments adde
- âŠ