71 research outputs found

    Eliminating ambiguities in electrical measurements of advanced liquid crystal materials

    Get PDF
    Existing and future display and non-display applications of thermotropic liquid crystals rely on the development of new mesogenic materials. Electrical measurements of such materials determine their suitability for a specific application. In the case of molecular liquid crystals, their direct current (DC) electrical conductivity is caused by inorganic and/or organic ions typically present in small quantities even in highly purified materials. Important information about ions in liquid crystals can be obtained by measuring their DC electrical conductivity. Available experimental reports indicate that evaluation of the DC electrical conductivity of liquid crystals is a very non-trivial task as there are many ambiguities. In this paper, we discuss how to eliminate ambiguities in electrical measurements of liquid crystals by considering interactions between ions and substrates of a liquid crystal cell. In addition, we analyze factors affecting a proper evaluation of DC electrical conductivity of advanced multifunctional materials composed of liquid crystals and nanoparticles

    Interplay between dipole and quadrupole modes of field influence in liquid-crystalline suspensions of ferromagnetic particles

    Full text link
    In the framework of continuum theory we study orientational transitions induced by electric and magnetic fields in ferronematics, i.e., in liquid-crystalline suspensions of ferromagnetic particles. We have shown that in a certain electric field range the magnetic field can induce a sequence of re-entrant orientational transitions in ferronematic layer: nonuniform phase --- uniform phase --- nonuniform phase. This phenomenon is caused by the interplay between the dipole (ferromagnetic) and quadrupole (dielectric and diamagnetic) mechanisms of the field influence on a ferronematic structure. We have found that these re-entrant Freedericksz transitions exhibit tricritical behavior, i.e., they can be of the first or the second order. The character of the transitions depends on a degree of redistribution of magnetic admixture in the sample exposed to uniform magnetic field (magnetic segregation). We demonstrate how electric and magnetic fields can change the order of orientational transitions in ferronematics. We show that electric Freedericksz transitions in ferronematics subjected to magnetic field have no re-entrant nature. Tricritical segregation parameters for the transitions induced by electric or magnetic fields are obtained analytically. We demonstrate the re-entrant behavior of ferronematic by numerical simulations of the magnetization and optical phase lag.Comment: 12 pages, 9 figures, to be published in Soft Matte

    Improving experimental procedures for assessing electrical properties of advanced liquid crystal materials

    Get PDF
    Electrical measurements of liquid crystals are a standard part of their material characterisation. Typically, such measurements are carried out using a sandwich-like cell of a single thickness. In this paper, we show that interactions between ions and substrates of a liquid crystal cell result in the dependence of the direct current electrical conductivity of liquid crystal materials on the cell thickness. The obtained experimental results combined with modelling point to the existence of ions of several types and to the competition between ion-releasing and ion-trapping processes in liquid crystal cells. We also propose to use a multi-electrode twin-cell that allows the visualisation of the electric field screening effect in liquid crystals and its mitigation by means of ferroelectric nanoparticles

    New fast-relaxed liquid crystal materials for optical communication networks

    No full text
    Recording the dynamic holograms with microsecond relaxation times under action of laser pulses was obtained in composites based on the novel class of liquid crystals (LC), namely in ionic metal-alkanoates. Holographic parameters of the recording and relaxation characteristics were studied for doped lyotropic ionic LC and sandwich-like cells with photo-sensitive impurities for purposes of real-time dynamic holography applications. The thin cells demonstrate high-velocity dynamic grating recording under laser pulses both of nanosecond and picosecond durations at the visible wavelengths. The cells exhibit a fast temperature relaxation time (with the time constant 30 μs for the store heat density more than 50 kJ/s). Ionic lyotropic smectic LCs possess a high intrinsic anisotropic conductivity as compared with other LCs – dielectrics. To explain the relaxation mechanisms in ionic smectic LC matrix, the temperature dependences of the electro-conductivity have been investigated. The charge currier mobility and activation energy in cells were estimated. The mechanism of high-velocity resonance nonlinearity due to the saturation of excited states in photosensitive centers and mechanisms of the grating erasure connected with charge transport in the ionic LC matrix were discussed

    Dielectric and electrical properties of nematic liquid crystals 6CB doped with iron oxide nanoparticles. The combined effect of nanodopant concentration and cell thickness

    Get PDF
    Dispersing nanomaterials in liquid crystals has emerged as a very promising non-synthetic way to produce advanced multifunctional and tunable materials. As a rule, dielectric and electrical characterization of such materials is performed using cells of single thickness. As a result, the published reports vary even for similar systems. Confusion still exists as to the effects of nanodopants and cell thickness on the dielectric and electrical properties of liquid crystals. This factor hinders a widespread use of liquid crystals – nanoparticles systems in modern tech products. In this paper, we report systematic experimental studies of the combined effect of the cell thickness and iron oxide nanoparticle concentration on the electrical and dielectric properties of nematic liquid crystals 6CB. The measured dielectric spectra can be divided into three distinct regions corresponding to a low frequency (<10 Hz) dispersion, dispersion free range (102 - 104 Hz (electrical conductivity) and 102 - 105 (dielectric permittivity)), and high frequency dispersion (104 - 106 Hz (electrical conductivity) and 105 - 106 Hz (dielectric permittivity)). The real part of the dielectric permittivity is not affected by the cell thickness and its value can be tuned by changing the concentration of nanoparticles. At the same time, the electrical conductivity depends on both cell thickness and nanoparticle concentration. At intermediate frequencies (102 - 104 Hz) the electrical conductivity obeys the Jonscher power law and is dependent on the cell thickness because of ion-releasing and ioncapturing effects caused by nanoparticles and substrates of the cell. In addition, its value is affected by the electronic conductivity due to iron oxide nanoparticles and their nanoclusters. At higher frequencies (104 - 106 Hz) the electrical conductivity follows a super linear power law and is nearly independent of the cell thickness and nanoparticle concentration

    Nanomaterials in Liquid Crystals as Ion-Generating and Ion-Capturing Objects

    No full text
    The majority of tunable liquid crystal devices are driven by electric fields. The performance of such devices can be altered by the presence of small amounts of ions in liquid crystals. Therefore, the understanding of possible sources of ions in liquid crystal materials is very critical to a broad range of existing and future applications employing liquid crystals. Recently, nanomaterials in liquid crystals have emerged as a hot research topic, promising for its implementation in the design of wearable and tunable liquid crystal devices. An analysis of published results revealed that nanodopants in liquid crystals can act as either ion-capturing agents or ion-generating objects. In this paper, a recently developed model of contaminated nanomaterials in liquid crystals is analyzed. Nanoparticle-enabled ion capturing and ion generation regimes in liquid crystals are discussed within the framework of the proposed model. This model is in very good agreement with existing experimental results. Practical implications and future research directions are also discussed

    Kinetics of Ion-Capturing/Ion-Releasing Processes in Liquid Crystal Devices Utilizing Contaminated Nanoparticles and Alignment Films

    No full text
    Various types of nanomaterials and alignment layers are considered major components of the next generation of advanced liquid crystal devices. While the steady-state properties of ion-capturing/ion-releasing processes in liquid crystals doped with nanoparticles and sandwiched between alignment films are relatively well understood, the kinetics of these phenomena remains practically unexplored. In this paper, the time dependence of ion-capturing/ion-releasing processes in liquid crystal cells utilizing contaminated nanoparticles and alignment layers is analyzed. The ionic contamination of both nanodopants and alignment films governs the switching between ion-capturing and ion-releasing regimes. The time dependence (both monotonous and non-monotonous) of these processes is characterized by time constants originated from the presence of nanoparticles and films, respectively. These time constants depend on the ion adsorption/ion desorption parameters and can be tuned by changing the concentration of nanoparticles, their size, and the cell thickness

    On the Analogy between Electrolytes and Ion-Generating Nanomaterials in Liquid Crystals

    No full text
    Nanomaterials in liquid crystals are a hot topic of contemporary liquid crystal research. An understanding of the possible effects of nanodopants on the properties of liquid crystals is critical for the development of novel mesogenic materials with improved functionalities. This paper focuses on the electrical behavior of contaminated nanoparticles in liquid crystals. More specifically, an analogy between electrolytes and ion-generating nanomaterials in liquid crystals is established. The physical consequences of this analogy are analyzed. Under comparable conditions, the number of ions generated by nanomaterials in liquid crystals can be substantially greater than the number of ions generated by electrolytes of similar concentration
    corecore