246 research outputs found

    College student understanding of informed consent terminology

    Get PDF
    A good, understandable informed consent form (ICF) is key to ethical medical research, and the ICF is necessary according to United States federal regulation. Since they may be written in complex technical language, ICFs are often difficult for subjects to understand. The purpose of this research was to evaluate students\u27 understanding of terminology commonly used in the ICF. An online research survey was sent to active students of Eastern Michigan University (EMU) during the winter 2015 semester. Questions were asked to evaluate the students\u27 understanding of the correct meaning of the terms used in medical research. The majority of students understood common terminology used in informed consents, but they were confused about the meaning of the term Clinical Research/Trial and the location where the clinical studies were conducted. Therefore, investigators and Institutional Review Boards (IRBs) need to be aware of these potentially confusing items when writing an ICF

    Determination of mixed hydrate thermodynamics for reservoir modeling

    Get PDF
    Natural gas hydrates are likely to contain more carbon than in all other fossil fuel reserves combined worldwide. Most of the natural gas hydrate deposits contain CH4 along with other hydrocarbon gases like C2H 6, C3H8 and non-hydrocarbon gases like CO 2 and H2S. Thus, if CH4 stored in natural gas hydrates can be recovered, the hydrates would potentially become a clean energy resource for the next 10,000 years. The production of CH4 from natural gas hydrate reservoirs has been predicted by reservoir simulators that implement phase equilibria data to predict various production scenarios. Therefore, it is very important to predict accurately phase equilibria of mixed hydrates. In this work an empirical correlation of dissociation pressure with respect to temperature and gas phase composition for CH4-C 2H6 mixed hydrate system is developed by fitting to available experimental data. It is a simple method with limited accuracy. Statistical thermodynamics approach developed by van der Waals and Platteeuw in 1959 provides best approximation to predict the phase equilibrium data. They assumed that there are no lattice distortions due to the guest molecules, hence constant reference parameters are used for different guest molecules. Later, Hwang et al. by his molecular dynamics found that there are lattice distortions due to the guest molecules and Holder et al. proposed that the reference chemical potential difference Dm0w and reference enthalpy difference Dh0w varies with the guest molecule. In this work, a correlation of Dm0w and Dh0w with respect to guest molecular size is developed to estimate the values of Dm0w and Dh0w . The cell potential method developed by Anderson et al. is modified for variable reference parameters. The method is validated by reproducing the phase equilibria of simple hydrates and the structural transitions that are known to occur. Three-dimensional phase equilibria and structural transitions occurring in the mixed hydrates like CH4-C2H6, CH4-N2 and N2-CO2 are predicted accurately without fitting to experimental data. The phase equilibria of CH 4-CO2 and CH4-N2-CO 2 hydrates are predicted to assess the production of CH4 from the reservoirs by replacing CH4 in the hydrate by pure CO 2 and N2+CO2 mixture which serves dual purpose of CH4 recovery and CO2 sequestration

    IN VITRO EVALUATION OF ANTIMICROBIAL ACTIVITY OF MICRO PROPAGATED CALLUS OF CURUULIGO ORCHIODES (BLACK MUSILLI) AGAR WELL DIFFUSION AND MINIMUM INHIBITORY CONCENTRATION (MIC)

    Get PDF
    Objective: In vitro investigated the potential of methanol extracts of micro-propagated C. orchiodes in the antimicrobial property against the three gram-negative bacteria, two gram-positive and one fungal filament.Methods: The micro propagated callus methanol extract was examined against Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus and Candida albicans. The zone of inhibitions are determined at 10 mg/ml concentration of methanol extracts of callus on agar well plate and MIC against tested microorganism.Results: The highest antibacterial activity recorded in Staphylococcus aureus Bacillus cereus and followed by Candida albicans. Antibacterial activity of leaf extracts of A. reticulata was also significant against the tested microorganisms Escherichia coli, Salmonella typhi, Proteus vulgaris, Pseudomonas aeruginosa compared to ciprofloxacin.Conclusion: Based on the above observations, these extracts were further evaluated for their effect on microorganisms causing infections like typhoid fever, urinary tract infections, septicemia, toxic shock syndrome, skin infection, nosocomial infection, arthritis and diarrhoea. The results also suggest that these plants serve a therapeutic purpose in the treatment bacterial infections

    Generative adversarial deep learning in images using Nash equilibrium game theory

    Get PDF
    A generative adversarial learning (GAL) algorithm is presented to overcome the manipulations that take place in adversarial data and to result in a secured convolutional neural network (CNN). The main objective of the generative algorithm is to make some changes to initial data with positive and negative class labels in testing, hence the CNN results in misclassified data. An adversarial algorithm is used to manipulate the input data that represents the boundaries of learner’s decision-making process. The algorithm generates adversarial modifications to the test dataset using a multiplayer stochastic game approach, without learning how to manipulate the data during training. Then the manipulated data is passed through a CNN for evaluation. The multi-player game consists of an interaction between adversaries which generates manipulations and retrains the model by the learner. The Nash equilibrium game theory (NEGT) is applied to Canadian Institute for Advance Research (CIFAR) dataset. This was done to produce a secure CNN output that is more robust to adversarial data manipulations. The experimental results show that proposed NEGT-GAL achieved a grater mean value of 7.92 and takes less wall clock time of 25,243 sec. Therefore, the proposed NEGT-GAL outperforms the compared existing methods and achieves greater performance

    Minimization of power loss in newfangled cascaded H-bridge multilevel inverter using in-phase disposition PWM and wavelet transform based fault diagnosis

    Get PDF
    AbstractNowadays multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to reduced harmonic distortions, lower electromagnetic interference, and higher DC link voltages. However, the increased number of components, complex PWM control, voltage-balancing problem, and component failure in the circuit are some of the disadvantages. The topology suggested in this paper provides a DC voltage in the shape of a staircase that approximates the rectified shape of a commanded sinusoidal wave to the bridge inverter, which in turn alternates the polarity to produce an AC voltage with low total harmonic distortion and power loss. This topology requires fewer components and hence it leads to the reduction of overall cost and complexity particularly for higher output voltage levels. The component fault diagnostic algorithm is developed using wavelets transform tool. Finally an experimental prototype is developed and validated with the simulation results

    Investigation of the Zinc binding region of Prothymosin-alpha : A spectroscopic and thermodynamic approach to study metal binding in Intrinsically disordered proteins

    Get PDF
    The goal of this study is to provide a deeper insight into how metals bind intrinsically disordered proteins (IDPs) by taking zinc binding to prothymosin-alpha as a case study. The involvement of metals in several diseases caused by (IDPs) has been noted long ago (Cu binding of [alpha]-synuclein in Parkinsons disease, prion aggregation due to Cu in madcow disease. etc.). However, there is still a lack of understanding of how metal binds IDPs. A deeper insight into metal binding by IDPs is essential for a full understanding of a proteome and to pave a way for drug development. Prothymosin-alpha (Prot[alpha]) is an acidic, natively unfolded, and highly conserved protein located mostly in the nucleus of eukaryotic cells. It consists of 110 amino acids out of which 53 residues are aspartic (D) and glutamic (E) acids thus it is highly acidic. The exact biological role of the protein is unknown. However, it has been shown to be involved in cell proliferation, chromatin remodeling, antiapoptotic activity etc. One of the most interesting characteristics of Prot[alpha] is its ability to bind metal cations like Ca²�, Mg²�, Mn²�, Zn²�, Al²�. In the background of all these cations, Prot[alpha] selectively interacts with Zn²� and undergoes a structural change plus the interactions of the protein with its binding partners are enhanced in the presence of Zn²�. These features underline the importance of Zn²� binding in Prot[alpha]. Very little information is available about Zn²� binding to Prot[alpha]. A recent NMR study has shown that the 48-110 segment of Prot[alpha] is the Zn²� binding region of the protein. Although the 48-110 region is shown to be the Zn²� binding region, the central 50-89 segment, where most of the Zn²� binding residues are located in the protein, was used for all the studies here. To aid in the synthesis, purification, and characterization of highly negatively charged sequences like Prot[alpha](50-89)N50W new amino acid derivatives, 4-pyridylmethyl protected glutamic and aspartic acids were developed and their application was tested. Subsequently a circular dichroism (CD) spectroscopic study on Prot[alpha](50-89)N50W revealed that the peptide, like the full length protein, undergoes a structural change in the presence of Zn²� and both the full protein and the peptide were saturated at 75 eq of Zn²� indicating that the majority of Zn added binds in this region. The above study had also shown that selective binding of Zn²� by Prot[alpha](50-89)N50W is due to sequence specificity and not solely because of electrostatic interactions between Prot[alpha](50-89)N50W and Zn²�. Further the CD and differential scanning calorimetry (DSC) studies have shown that Prot[alpha](50-89)N50W undergoes a structural change similar to an alpha helix when heated from 20-80°C. To set the stage for determining the specific glutamic and aspartic residues in Prot[alpha] that act as ligands for Zn²�, a proof of principle for spin inversion recovery experiments has been provided using Zn²� binding to EDTA as a model. This idea can further be extended to Prot[alpha](50-89)N50W to understand if Zn²� binds to a specific set of residues or if several degenerate binding sites exist.Ph.D

    Biodegradation of Petroleum Hydrocarbons

    Get PDF
    Biodegradation of hydrocarbons in the environment is the natural way of cleaning the nature. The potential biodegradation of hydrocarbon contaminants by microorganisms is dependent on the environmental factors and the nutrients available. In this study culture conditions like temperature, pH, and nitrogen source were optimized by conventional one-factor at a time experimentation and the combination of other nutrients (nitrogen, phosphorus, magnesium, and sulfur) was optimized by using design of experiments (DOE) combined with grey relational analysis (GRA). Total petroleum hydrocarbons of oil sludge, light crude oil and heavy crude oil, degradation was studied for a period of thirty days using microbial strains isolated from the hydrocarbon contaminated sites. They have shown predominant results in the degradation of TPH’s under optimized culture conditions and prior addition of biosurfactants in the culture flask has enhanced the degradation process and microbial biomass yield

    The Synthesis of Imidazole Fatty Acid Conjugates as Inhibitors of Apoptosis

    Get PDF
    Ionizing radiation is known to initiate apoptosis in mammalian cells by causing the transformation of cytochrome c into a peroxidase, which results in the specific peroxidation of the mitochondrial phospholipid cardiolipin. Here we report the design and synthesis of 8 imidazole fatty acid derivatives that bind to the cyt c:CL complex and inhibit the peroxidase activity required for the initiation of apoptosis. We postulate that imidazole acts as a sixth ligand to the haem iron and stops the interaction with H2O2. Two mitochondrially directed analogues (3-hydroxypropyl)triphenylphosphonium esters) of 12-imidazole-stearic acid and 12-imidazole-oleic acid not only were demonstrated to be peroxidase inhibitors in vitro, but were also extraordinarily effective in protecting mice from lethal doses (9 Gy) of ionization radiation. We studied the structure activity relationship to a group of triphenyl phosphonium derivatives containing imidazole at different positions on the fatty acid chain, and observed that the C8-imidazole stearate analogue had marginally better activity than the others. But overall, the structure activity result were remarkable “flat” with all compounds prepared having rather similar inhibitory strength. We also synthesized carnitine mono and di-esters of 12-imidazole fatty acids but full biological data is not yet available for these compounds
    corecore