55 research outputs found
Structural investigation of the insulator-metal transition in NiS2-xSex compounds
We report on a combined measurement of high-resolution x-ray diffraction on powder and Raman scattering on single crystalline NiS2-xSex samples that exhibit the insulator-metal transition with Se doping. Via x rays, an abrupt change in the bond length between Ni and S (Se) ions was observed at the transition temperature, in sharp contrast to the almost constant bond length between chalcogen ions. Raman scattering, a complementary technique with the unique sensitivity to the vibrations of chalcogen bonds, revealed no anomalies in the phonon spectrum, consistent with the x-ray diffraction results. This indicates the important role of the interaction between Ni and S (Se) in the insulator-metal transition. The potential implication of this interpretation is discussed in terms of current theoretical models. © 2018 American Physical Societ
Enhanced Rg3 negatively regulates Th1 cell responses
Background: Korean Red Ginseng (KRG; Panax ginseng Meyer) is a widely used medicinal herb known to exert various immune modulatory functions. KRG and one of its purified components, ginsenoside Rg3, are known to possess anti-inflammatory activities. How they impact helper T cell-mediated responses is not fully explored. In this study, we attempted to evaluate the effect of KRG extract (KRGE) and ginsenoside Rg3 on Th1 cell responses. Methods: Using well-characterized T cell in vitro differentiation systems, we examined the effects of KRGE or enhanced Rg3 on the Th1-inducing cytokine production from dendritic cells (DC) and the naïve CD4+ T cells differentiation to Th1 cells. Furthermore, we examined the change of Th1 cell population in the intestine after treatment of enhanced Rg3. The influence of KRGE or enhanced Rg3 on Th1 cell differentiation was evaluated by fluorescence-activated cell sorting, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction. Results: KRGE significantly inhibited the production level of IL-12 from DCs and subsequent Th1 cell differentiation. Similarly, enhanced Rg3 significantly suppressed the expression of interferon gamma (IFNγ) and T-bet in T cells under Th1-skewing condition. Consistent with these effects in vitro, oral administration of enhanced Rg3 suppressed the frequency of Th1 cells in the Peyer's patch and lamina propria cells in vivo. Conclusion: Enhanced Rg3 negatively regulates the differentiation of Th1 cell in vitro and Th1 cell responses in the gut in vivo, providing fundamental basis for the use of this agent to treat Th1-related diseases. Keywords: Enhanced Rg3, IFNγ, IL-12, Korean Red Ginseng extract, Th
- …