2 research outputs found

    Chemerin acts via CMKLR1 and GPR1 to stimulate migration and invasion of gastric cancer cells: putative role of decreased TIMP-1 and TIMP-2

    Get PDF
    The chemokine-like peptide, chemerin, stimulates chemotaxis in several cell types. In this study we examined the expression of putative chemerin receptors in gastric cancer and the action of chemerin on cancer cell migration and invasion. Immunohistochemical studies of gastric tumors identified expression of two putative receptors, chemokine-like receptor-1 (CMKLR1) and G-protein coupled receptor 1(GPR1), in cancer cells; there was also some expression in stromal myofibroblasts although generally at a lower intensity. The expression of both receptors was detected in a gastric cancer cell line, AGS; chemerin itself was expressed in cultured gastric cancer myofibroblasts but not AGS cells. Chemerin stimulated (a) morphological transformation of AGS cells characterized by extension of processes and cell scattering, (b) migration in scratch wound assays and (c) both migration and invasion in Boyden chamber chemotaxis assays. These responses were inhibited by two putative receptor antagonists CCX832 and α-NETA. Inhibition of receptor expression by siRNA selectively reduced CMKLR1 or GPR1 and inhibited the action of chemerin indicating that both receptors contributed to the functional response. Using a proteomic approach employing stable isotope dynamic labeling of secretomes (SIDLS) to selectively label secreted proteins, we identified down regulation of tissue inhibitors of metalloproteinease (TIMP)1 and TIMP2 in media in response to chemerin. When cells were treated with chemerin and TIMP1 or TIMP2 the migration response to chemerin was reduced. The data suggest a role for chemerin in promoting the invasion of gastric cancer cells via CMKLR1 and GPR1at least partly by reducing TIMP1 and TIMP2 expression. Chemerin receptor antagonists have potential in inhibiting gastric cancer progression

    Matrix metalloproteinase (MMP)-7 in Barrett’s esophagus and esophageal adenocarcinoma : expression, metabolism and functional significance

    Get PDF
    Supported by grants from North West Cancer Research (Grant number: CR945), The Wellcome Trust (Grant number: 074287/Z/03/Z) and a research studentship (HG) from the Libyan Government.Matrix metalloproteinase (MMP)‐7, unlike many MMPs, is typically expressed in epithelial cells. It has been linked to epithelial responses to infection, injury, and tissue remodeling including the progression of a number of cancers. We have now examined how MMP‐7 expression changes in the progression to esophageal adenocarcinoma (EAC), and have studied mechanisms regulating its expression and its functional significance. Immunohistochemistry revealed that MMP‐7 was weakly expressed in normal squamous epithelium adjacent to EAC but was abundant in epithelial cells in both preneoplastic lesions of Barrett's esophagus and EAC particularly at the invasive front. In the stroma, putative myofibroblasts expressing MMP‐7 were abundant at the invasive front but were scarce or absent in adjacent tissue. Western blot and ELISA revealed high constitutive secretion of proMMP‐7 in an EAC cell line (OE33) that was inhibited by the phosphatidylinositol (PI) 3‐kinase inhibitor LY294002 but not by inhibitors of protein kinase C, or MAP kinase activation. There was detectable proMMP‐7 in cultured esophageal myofibroblasts but it was undetectable in media. Possible metabolism of MMP‐7 by myofibroblasts studied by proteomic analysis indicated degradation via extensive endopeptidase, followed by amino‐ and carboxpeptidase, cleavages. Myofibroblasts exhibited increased migration and invasion in response to conditioned media from OE33 cells that was reduced by MMP‐7 knockdown and immunoneutralization. Thus, MMP‑7 expression increases at the invasive front in EAC which may be partly attributable to activation of PI 3‐kinase. Secreted MMP‐7 may modify the tumor microenvironment by stimulating stromal cell migration and invasion.Publisher PDFPeer reviewe
    corecore