35 research outputs found

    Lactobacillus plantarum CUL66 can impact cholesterol homeostasis in Caco-2 enterocytes

    Get PDF
    Hypercholesterolemia drives the development of cardiovascular disease, the leading cause of mortality in western society. Supplementation with probiotics that interfere with cholesterol metabolism may provide a contribution to disease prevention. Lactobacillus plantarum CUL66 (NCIMB 30280) has been assessed in vitro for its ability to impact cholesterol absorption. L. plantarum CUL66 tested positive for bile salt hydrolase activity and the ability to assimilate cholesterol from culture media. RT-qPCR analysis showed that the bacterium significantly decreased the expression of Niemann-Pick C1-like 1 and ATP-binding cassette transporter-1 in polarised Caco-2 cells after 6 h exposure. Conversely, the expression of ATP-binding cassette sub-family G member (ABCG)-5 and ABCG-8, and 3-hydroxy-3-methylglutaryl-CoA reductase were significantly increased. Using a radiolabelled assay, we also observed significant reductions in the uptake and basolateral efflux of cholesterol by Caco-2 cells exposed to L. plantarum CUL66. This in vitro study identified L. plantarum CUL66 as a cholesterol lowering bacteria by highlighting its ability to beneficially regulate multiple in vitro events associated with intestinal cholesterol metabolism and provides evidence of efficacy for its inclusion in future in vivo studies

    Vitamin D associates with improved quality of life in participants with irritable bowel syndrome: outcomes from a pilot trial

    Get PDF
    Background: Vitamin D deficiency has been associated or implicated with the pathophysiology of the gastrointestinal conditions inflammatory bowel disease and colorectal cancer, as well as with depression. No trials or epidemiology studies to date have investigated a link with irritable bowel syndrome (IBS). A single case report has suggested a benefit in IBS of vitamin D supplementation. We hypothesised that IBS participants with vitamin D insufficiency would benefit from repletion in terms of their IBS symptoms. We undertook a pilot trial to provide data to support a power calculation and to justify a full trial. Methods: This was a randomised, double blinded, three-arm parallel design trial of vitamin D, placebo or a combination of vitamin D and probiotics. Participants were further stratified according to whether they were vitamin D replete or insufficient. Vitamin D status was determined by blood test at baseline and exit; IBS symptoms were assessed by validated questionnaire; dietary intakes were assessed by food frequency questionnaire. Results: A significant proportion of the IBS population were vitamin D deficient, such that the replete stratum could not be adequately recruited. There was a significant association in the baseline data between circulating vitamin D level and quality of life (“How much has IBS affected your life?”). Supplementation significantly improved vitamin D level versus placebo. IBS symptoms were not significantly improved in this pilot, although a power calculation was enabled from the intervention data. Conclusions: The IBS population exhibits significant levels of vitamin D insufficiency and would benefit from screening and possible supplementation. The impact of IBS on quality of life may be reduced by vitamin D level. Future trials should have a sample size of over 9

    Probiotics with vitamin C for the prevention of upper respiratory tract symptoms in children aged 3-10 years: randomised controlled trial

    Get PDF
    In a double-blind, randomised, parallel-group, placebo-controlled study, healthy school children aged 3-10 years received a probiotic based supplement daily for 6 months to assess the impact on the incidence and duration of upper respiratory tract infection (URTI) symptoms. The intervention comprised Lab4 probiotic (Lactobacillus acidophilus CUL21 and CUL60, Bifidobacterium bifidum CUL20 and Bifidobacterium animalis subsp. lactis CUL34) at 12.5 billion cfu/day plus 50 mg vitamin C or a matching placebo. 171 children were included in the analysis (85 in placebo and 86 in active group). Incidence of coughing was 16% (P=0.0300) significantly lower in the children receiving the active intervention compared to the placebo. No significant differences in the incidence rate of other URTI symptoms were observed. There was significantly lower risk of experiencing five different URTI related symptoms in one day favouring the active group (Risk ratio: 0.31, 95% confidence interval: 0.12, 0.81, P=0.0163). Absenteeism from school and the use of antibiotics was also significantly reduced for those in the active group (-16%, P=0.0060 and -27%, P=0.0203, respectively). Our findings indicate that six months daily supplementation with the Lab4 probiotic and vitamin C combination reduces the incidence of coughing, absenteeism and antibiotic usage in 3 to 10 year old children

    A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being

    Get PDF
    In an exploratory, block-randomised, parallel, double-blind, single-centre, placebo-controlled superiority study (ISRCTN12562026, funded by Cultech Ltd), 220 Bulgarian participants (30 to 65 years old) with BMI 25–34.9 kg/m2 received Lab4P probiotic (50 billion/day) or a matched placebo for 6 months. Participants maintained their normal diet and lifestyle. Primary outcomes were changes in body weight, BMI, waist circumference (WC), waist-to-height ratio (WtHR), blood pressure and plasma lipids. Secondary outcomes were changes in plasma C-reactive protein (CRP), the diversity of the faecal microbiota, quality of life (QoL) assessments and the incidence of upper respiratory tract infection (URTI). Significant between group decreases in body weight (1.3 kg, p < 0.0001), BMI (0.045 kg/m2, p < 0.0001), WC (0.94 cm, p < 0.0001) and WtHR (0.006, p < 0.0001) were in favour of the probiotic. Stratification identified greater body weight reductions in overweight subjects (1.88%, p < 0.0001) and in females (1.62%, p = 0.0005). Greatest weight losses were among probiotic hypercholesterolaemic participants (−2.5%, p < 0.0001) alongside a significant between group reduction in small dense LDL-cholesterol (0.2 mmol/L, p = 0.0241). Improvements in QoL and the incidence rate ratio of URTI (0.60, p < 0.0001) were recorded for the probiotic group. No adverse events were recorded. Six months supplementation with Lab4P probiotic resulted in significant weight reduction and improved small dense low-density lipoprotein-cholesterol (sdLDL-C) profiles, QoL and URTI incidence outcomes in overweight/obese individuals

    The effect of a preparation of minerals, vitamins and trace elements on the cardiac gene expression pattern in male diabetic rats

    Get PDF
    BACKGROUND: Diabetic patients have an increased risk of developing cardiovascular diseases, which are the leading cause of death in developed countries. Although multivitamin products are widely used as dietary supplements, the effects of these products have not been investigated in the diabetic heart yet. Therefore, here we investigated if a preparation of different minerals, vitamins, and trace elements (MVT) affects the cardiac gene expression pattern in experimental diabetes. METHODS: Two-day old male Wistar rats were injected with streptozotocin (i.p. 100 mg/kg) or citrate buffer to induce diabetes. From weeks 4 to 12, rats were fed with a vehicle or a MVT preparation. Fasting blood glucose measurement and oral glucose tolerance test were performed at week 12, and then total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41012 oligonucleotides. RESULTS: Significantly elevated fasting blood glucose concentration and impaired glucose tolerance were markedly improved by MVT-treatment in diabetic rats at week 12. Genes with significantly altered expression due to diabetes include functional clusters related to cardiac hypertrophy (e.g. caspase recruitment domain family, member 9; cytochrome P450, family 26, subfamily B, polypeptide; FXYD domain containing ion transport regulator 3), stress response (e.g. metallothionein 1a; metallothionein 2a; interleukin-6 receptor; heme oxygenase (decycling) 1; and glutathione S-transferase, theta 3), and hormones associated with insulin resistance (e.g. resistin; FK506 binding protein 5; galanin/GMAP prepropeptide). Moreover the expression of some other genes with no definite cardiac function was also changed such as e.g. similar to apolipoprotein L2; brain expressed X-linked 1; prostaglandin b2 synthase (brain). MVT-treatment in diabetic rats showed opposite gene expression changes in the cases of 19 genes associated with diabetic cardiomyopathy. In healthy hearts, MVT-treatment resulted in cardiac gene expression changes mostly related to immune response (e.g. complement factor B; complement component 4a; interferon regulatory factor 7; hepcidin). CONCLUSIONS: MVT-treatment improved diagnostic markers of diabetes. This is the first demonstration that MVT-treatment significantly alters cardiac gene expression profile in both control and diabetic rats. Our results and further studies exploring the mechanistic role of individual genes may contribute to the prevention or diagnosis of cardiac complications in diabetes

    Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats

    Get PDF
    Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2–3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.Nutricia Researc

    Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats

    Get PDF
    Ageing is associated with changes in the gut microbiome that may contribute to age-related changes in cognition. Previous work has shown that dietary supplements with multi-species live microorganisms can influence brain function, including induction of hippocampal synaptic plasticity and production of brain derived neurotrophic factor, in both young and aged rodents. However, the effect of such dietary supplements on memory processes has been less well documented, particularly in the context of aging. The main aim of the present study was to examine the impact of a long-term dietary supplement with a multi-species live Lactobacillus and Bifidobacteria mixture (Lactobacillus acidophilus CUL60, L. acidophilus CUL21, Bifidobacterium bifidum CUL20 and B. lactis CUL34) on tests of memory and behavioural flexibility in 15–17-month-old male rats. Following behavioural testing, the hippocampus and prefrontal cortex was extracted and analysed ex vivo using 1H nuclear magnetic resonance (1H NMR) spectroscopy to examine brain metabolites. The results showed a small beneficial effect of the dietary supplement on watermaze spatial navigation and robust improvements in long-term object recognition memory and short-term memory for object-in-place associations. Short–term object novelty and object temporal order memory was not influenced by the dietary supplement in aging rats. 1H NMR analysis revealed diet-related regional-specific changes in brain metabolites; which indicated changes in several pathways contributing to modulation of neural signaling. These data suggest that chronic dietary supplement with multi-species live microorganisms can alter brain metabolites in aging rats and have beneficial effects on memory
    corecore