28 research outputs found

    Human adenovirus type 7 subunit vaccine induces dendritic cell maturation through the TLR4/NF-κB pathway is highly immunogenic

    Get PDF
    IntroductionHuman adenovirus type 7 (HAdv-7) infection is the main cause of upper respiratory tract infection, bronchitis and pneumonia in children. At present, there are no anti- adenovirus drugs or preventive vaccines in the market. Therefore, it is necessary to develop a safe and effective anti-adenovirus type 7 vaccine.MethodsIn this study, In this study, we used the baculovirus-insect cell expression system to design a recombinant subunit vaccine expressing adenovirus type 7 hexon protein (rBV-hexon) to induce high-level humoral and cellular immune responses. To evaluate the effectiveness of the vaccine, we first detected the expression of molecular markers on the surface of antigen presenting cells and the secretion of proinflammatory cytokines in vitro. We then measured the levels of neutralizing antibodies and T cell activation in vivo.ResultsThe results showed that the rBV-hexon recombinant subunit vaccine could promote DC maturation and improve its antigen uptake capability, including the TLR4/NF-κB pathway which upregulated the expression of MHCI, CD80, CD86 and cytokines. The vaccine also triggered a strong neutralizing antibody and cellular immune response, and activated T lymphocytes.DiscussionTherefore, the recombinant subunit vaccine rBV-hexon promoted promotes humoral and cellular immune responses, thereby has the potential to become a vaccine against HAdv-7

    Structures of the Toxoplasma

    No full text

    Giant Electrorheological Fluids with Ultrahigh Electrorheological Efficiency Based on a Micro/nano Hybrid Calcium Titanyl Oxalate Composite

    No full text
    A novel micro/nanoparticle hybrid calcium titanyl oxalate electrorheological (ER) material composed of micron-sized spindly particles and nanometer-sized irregular particles was successfully fabricated. The giant ER fluid based on the composite exhibits enhanced not only yield stress but also low field-off viscosity, thereby resulting in an ultrahigh ER efficiency that greatly exceeds that of any existing giant ER (GER) material. The synergistic effect between the spindly microparticles and irregular nanoparticles discovered in this study suggests a promising method for solving the long-standing ER efficiency problems. Moreover, the one-step synthesis approach presented in this work can be readily expanded for mass production of other GER materials in practical applications

    Conformational change of Plasmodium TRAP is essential for sporozoite migration and transmission

    No full text
    International audienceEukaryotic cell adhesion and migration rely on surface adhesins connecting extracellular ligands to the intracellular actin cytoskeleton. Plasmodium sporozoites are transmitted by mosquitoes and rely on adhesion and gliding motility to colonize the salivary glands and to reach the liver after transmission. During gliding, the essential sporozoite adhesin TRAP engages actin filaments in the cytoplasm of the parasite, while binding ligands on the substrate through its inserted (I) domain. Crystal structures of TRAP from different Plasmodium species reveal the I domain in closed and open conformations. Here, we probe the importance of these two conformational states by generating parasites expressing versions of TRAP with the I domain stabilized in either the open or closed state with disulfide bonds. Strikingly, both mutations impact sporozoite gliding, mosquito salivary gland entry, and transmission. Absence of gliding in sporozoites expressing the open TRAP I domain can be partially rescued by adding a reducing agent. This suggests that dynamic conformational change is required for ligand binding, gliding motility, and organ invasion and hence sporozoite transmission from mosquito to mammal

    Extending the Structural View of Class B GPCRs

    No full text
    The secretin-like class B family of G protein-coupled receptors (GPCRs) are key players in hormonal homeostasis. Recent structures of various receptors in complex with a variety of orthosteric and allosteric ligands provide fundamental new insights into the function and mechanism of class B GPCRs, including: (i) ligand-induced changes in the relative orientation of the extracellular and transmembrane receptor domains; (ii) intramolecular interaction networks that stabilize conformational changes to accommodate intracellular G protein binding; and (iii) allosteric modulation of receptor activation. This review provides a comprehensive analysis of the structural, biochemical, and pharmacological data on class B GPCRs for understanding ligand–receptor interaction and modulation mechanisms and assessing the potential implications for drug discovery for the secretin-like GPCR family. Methodological developments in X-ray crystallography and cryo-electron microscopy have enabled the determination of the first full-length and G protein-coupled structures of class B G protein-coupled receptors (GPCRs). Structural comparison of different class B GPCR–ligand complexes provides insights into the molecular mechanisms of receptor activation, including: (i) ligand-induced conformational changes of extracellular and transmembrane domains; (ii) intramolecular interaction networks facilitating G protein coupling; and (iii) negative and positive allosteric modulation of receptor activation. The new structures of class B GPCRs reveal novel allosteric binding sites. The structural details of the binding modes of negative and positive allosteric modulators provide new templates for structure-based drug discovery for this pharmaceutically relevant receptor family

    Design and assessment of TRAP-CSP fusion antigens as effective malaria vaccines.

    No full text
    The circumsporozoite protein (CSP) and thrombospondin-related adhesion protein (TRAP) are major targets for pre-erythrocytic malaria vaccine development. However, the CSP-based vaccine RTS,S provides only marginal protection, highlighting the need for innovative vaccine design and development. Here we design and characterize expression and folding of P. berghei (Pb) and P. falciparum (Pf) TRAP-CSP fusion proteins, and evaluate immunogenicity and sterilizing immunity in mice. TRAP N-terminal domains were fused to the CSP C-terminal αTSR domain with or without the CSP repeat region, expressed in mammalian cells, and evaluated with or without N-glycan shaving. Pb and Pf fusions were each expressed substantially better than the TRAP or CSP components alone; furthermore, the fusions but not the CSP component could be purified to homogeneity and were well folded and monomeric. As yields of TRAP and CSP fragments were insufficient, we immunized BALB/c mice with Pb TRAP-CSP fusions in AddaVax adjuvant and tested the effects of absence or presence of the CSP repeats and absence or presence of high mannose N-glycans on total antibody titer and protection from infection by mosquito bite both 2.5 months and 6 months after the last immunization. Fusions containing the repeats were completely protective against challenge and re-challenge, while those lacking repeats were significantly less effective. These results correlated with higher total antibody titers when repeats were present. Our results show that TRAP-CSP fusions increase protein antigen production, have the potential to yield effective vaccines, and also guide design of effective proteins that can be encoded by nucleic acid-based and virally vectored vaccines
    corecore