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Human adenovirus type 7
subunit vaccine induces
dendritic cell maturation through
the TLR4/NF-kB pathway is
highly immunogenic
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Introduction: Human adenovirus type 7 (HAdv-7) infection is the main cause of

upper respiratory tract infection, bronchitis and pneumonia in children. At

present, there are no anti- adenovirus drugs or preventive vaccines in the

market. Therefore, it is necessary to develop a safe and effective anti-

adenovirus type 7 vaccine.

Methods: In this study, In this study, we used the baculovirus-insect cell

expression system to design a recombinant subunit vaccine expressing

adenovirus type 7 hexon protein (rBV-hexon) to induce high-level humoral

and cellular immune responses. To evaluate the effectiveness of the vaccine,

we first detected the expression of molecular markers on the surface of antigen

presenting cells and the secretion of proinflammatory cytokines in vitro . We

then measured the levels of neutralizing antibodies and T cell activation in vivo.

Results: The results showed that the rBV-hexon recombinant subunit vaccine

could promote DC maturation and improve its antigen uptake capability,

including the TLR4/NF-kB pathway which upregulated the expression of

MHCI, CD80, CD86 and cytokines. The vaccine also triggered a strong

neutralizing antibody and cellular immune response, and activated

T lymphocytes.

Discussion: Therefore, the recombinant subunit vaccine rBV-hexon promoted

promotes humoral and cellular immune responses, thereby has the potential to

become a vaccine against HAdv-7.
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1 Introduction

Human adenovirus (HAdv) infects humans and causes a variety

of respiratory and intestinal diseases. In children, it is highly

infectious and infection with HAdv often leads to diseases such as

acute respiratory disease (ARD), which includes upper respiratory

tract infection, bronchitis and pneumonia (Tsou et al., 2012; Foong

Ng et al., 2015). In immunocompetent adults, symptoms resulting

from an adenovirus infection are usually mild and self-limiting, but

they can lead to serious consequences and even fatalities in children

and individuals with low immune function (Tang et al., 2013; Cui

et al., 2015; Zhang et al., 2016).

Adenoviruses are divided into seven subgroups: A, B, C, D, E, F

and G. The most common types associated with respiratory

infection are types 3, 7, 14 and 21 (subgroup B), types 1, 2 and 5

(subgroup C) and type 4 (subgroup E) (Carr et al., 2011; Wo et al.,

2015). Among them, type B1 adenoviruses, HAdV-3, HAdV-7 and

HAdV-55, are the main pathogens that cause adenovirus outbreaks

in most regions of North America, Asia and Europe (Hai le et al.,

2016; Bautista-Gogel et al., 2020; Li et al., 2021; Liu et al., 2022).

Epidemiological reports have shown that the most deadly

adenovirus infection in children may be related to human

adenovirus type 7 (HAdV-7) (Cheneau and Kremer, 2020).

However, little is known about the pathogenesis of severe diseases

induced by HAdV-7 is still poorly understood. At present, there is

also no anti-adenovirus drug available. there are no available anti-

adenovirus drugs.

The administration of vaccines is an effective way to prevent

infections. At present, there are no adenovirus vaccines available for

public use, and only vaccines targeting HAdV types 4 and 7 have

been developed for the US military (Russell et al., 2006). Therefore,

in order to reduce the harmful consequences of an adenovirus type

7 infection in humans, it is necessary to develop a safe and effective

anti-adenovirus type 7 vaccine. Studies have shown that specific

neutralizing antibodies present in the serum are associated with the

successful elimination of AdV (Heemskerk et al., 2005; Echavarria,

2008). Adenovirus capsid is composed of three major proteins

(hexon, penton base and fiber) and four minor proteins (IIIa, VI,

VIII and IX). The hexon protein is the standard for diagnosing

different serotypes, including the antigen components of

mammalian adenovirus. Furthermore, hexon protein is the target

of neutralizing antigen, and its outer end contains two loop

structures,. The loop structure is the binding site of where

adenovirus and binds to serum antibody,. Loop 1 is the region of

where HVR1-6 is located, and loop2 is the region of where HVR7 is

located. Hexon contains blood group-specific B cell epitopes, so it is

used for HAdV serotype typing. Hexon mutation can change the

antigenicity of adenovirus, and these antigenicity changes can make

adenovirus escape immunity (Yu et al., 2013; Su et al., 2016).

Therefore, the use of the antigenic hexon protein is a good

strategy for the development of an anti-adenovirus vaccine.

Compared with traditional inactivated vaccine and attenuated

vaccine, genetically engineered subunit vaccine has higher antigen

content and purity, and has many advantages such as strong

specificity, non-infectivity, low cost, less restrictions, etc., and is

the best choice for the research and development of vaccines for
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severe infectious diseases (Khalaj-Hedayati et al., 2020; Awadasseid

et al., 2021). At present, subunit vaccines can be produced on a large

scale by using Escherichia coli, baculovirus and Pichia pastoris as

vectors. Among them, the baculovirus-insect cell expression system

has the characteristics of easy operation, large capacity of

accommodating foreign genes, high expression efficiency, high

safety and low cost, and can modify the target protein after

expression. In 1983, Pennock et al. successfully expressed

Escherichia coli b –galactosidase by using insect cells, which

marked the birth of baculovirus-insect cell expression system

(Pennock et al., 1984). In recent years, the expression system has

also been used in many virulent infectious disease vaccines, such as

Covid-19 vaccine and influenza virus vaccine (Ruhnau et al., 2021;

Yang et al., 2022; Pavot et al., 2023). The expression system has also

been widely used in the field of animal vaccines. The vaccine

developed using the baculovirus-insect cell expression system

after fusion of the bluetongue virus VP2 gene with antigen-

presenting cell homing molecule (APCH) has been found to

enhance cellular immune response and VP2-induced neutralizing

activity (Legisa et al., 2015). Other studies have shown that avian

influenza H5 vaccine based on baculovirus-insect cell expression

system, combined with inactivated Newcastle disease vaccine, has a

significant clinical protection effect on highly pathogenic H5N1 and

Newcastle disease virus (Said et al., 2019). Because baculovirus can

only proliferate in insect cells, it is expected to use this characteristic

to design a new virus vector vaccine to improve the safety of the

current virus vector vaccine.

In this study, we selected the strategy of baculovirus vector

expressing adenovirus type 7 hexon protein to construct the

recombinant Baculovirus hexon (rBV-hexon) subunit vaccine.

The vaccine construct can stably express the hexamer protein,

which can not only promote DC maturation, but also effectively

stimulate humoral and cellular immune responses, and does not

lead to any dire effects in the vaccinated mice. This study provides

an experimental basis for the future development of a safe and

efficient recombinant subunit vaccine for human adenovirus type 7.
2 Materials and methods

2.1 Virus and animals

Human adenovirus type 7 was isolated and preserved in our

laboratory. Female BALB/c mice aged 5 weeks old were purchased

from the Experimental Animal Center of the Chinese Academy of

Agricultural Sciences. The Institutional Animal Care and Use

Committee (IACUC) of the Changchun University of Chinese

Medicine approved the animal experimental protocols (Approval

No. 2021079).
2.2 Construction of the subunit vaccine

The hAd-7 hexon sequence was obtained from the Human

adenovirus 7 strain BJ/CHN/2018 (GenBank: MH355567.1). The

hexon gene was inserted into pFastBac HT A vector to obtain
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pFastBac-hexon recombinant plasmid. The recombinant plasmid

was transformed into competent cells of DH10Bac™, coated on a

blue-and-white spot screening plate containing tetracycline (10 mg/

L), kanamycin sulfate (50 mg/L), gentamicin (7 mg/L) and IPTG/X-

gal, and inverted at 37°C for 48 hours. White colonies were selected

and added to SOC culture medium, and the recombinant

baculocytes were extracted after shaking culture at 37°C for 3

hours. Then, 4 mg of recombinant baculovirus was mixed with 8

mL of Cellfectin II Reagent transfection reagent, and then added to

1.5 × 106 viable Sf9 cells (Insect cell line)/ml. After standing at 27°C,

the cell state was observed every day. When 60% of the cells showed

CPE, the supernatant was collected as the first generation

recombinant baculovirus, which was used to infect SF9 cells and

spread to the third generation, and the recombinant baculovirus

(rBV) containing the hAd-7 hexon gene was obtained. To produce

the recombinant subunit vaccine, 2.5 × 106 viable Sf9 cells (Insect

cell line)/ml were infected with rBV at an MOI of 5 and incubated at

27°C for 72 hours. The expressed protein was purified by sucrose

gradient ultracentrifugation and analyzed by western blot.
2.3 Production of DC cells and uptake of
DC antigen

The mouse primary bone marrow cells were isolated according to

the methods described in a previous study (Han et al., 2021), and then

cultured in SF-900 medium containing 10% Fetal Bovine Serum, 20

ng/ml GM-CSF and 20 ng/ml IL-4 for 6 days. DCs were then

collected and subcultured into 6-well plates at 5 × 106 cells per

well. After 24h, 1 mg LPS (1mg/ml) and 10 mg rBV-hexon (5mg/ml)

were added and the cells were further incubated for 48 hours. The

DCs cells were then harvested and stained with FITC dextran (1mg/

ml) at 37 °C and 4 °C for 2h respectively. Flow cytometry was used to

analyze the difference in the mean fluorescence intensity (MFI). In

the DC maturation experiment, supernatants obtained from the

culture of antigen treated DCs were collected and used to detect

the presence of IL-6 (R&D, cat.DY406-05), IL-12p70 (R&D,

cat.M1270), TNFa (R&D, cat. DY410-05) and IFN-g (R&D, cat.

DY485-05) according to the instructions of the ELISA kit.
2.4 Mouse lymphocyte isolation

After euthanasia, the spleen was taken out under sterile

conditions and smashed with a 70mm cell strainer to prepare a

single-cell suspension. The spleen lymphocytes were extracted with

Mouse Spleen Lymphocyte Separation Kit (Solarbio, cat. P8860),

and the red blood cells contained in the splenic lymphocytes were

removed with Red Blood Cell Lysis Buffer (Solarbio, cat. R1010).
2.5 Flow cytometry

DC (2 × 106 cells) and spleen lymphocytes (2 × 106 cells) were

incubated with APC-CD11c (BioLegend, cat.117310), PE-CD80

(BioLegend, cat.104707), PE-CD86 (BioLegend, cat.105007), PE-
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CD40 (BioLegend, cat.124609), FITC-I-A/I-E (BioLegend, cat.), PE-

CD3 (BioLegend, cat.100205), PerCP-CD4 (BioLegend,

cat.100431), and FITC-CD8 (BioLegend, cat.100705) antibodies

and the proportion of positive cells was analyzed by flow cytometry.
2.6 Inhibitor analysis

DCs (5 × 106 cells) were pretreated with 100 nM TAK-242

(TLR4 inhibitor, MedChemExpress, USA) or 20 mM PDTC (NF-

kB inhibitor, MedChemExpress, USA) for 2 hours, and then

incubated with 10 mg rBV-hexon for 48 hours at 37 °C. Cell

surface markers were detected by flow cytometry and cytokines

were detected by the ELISA kit.
2.7 Animal immune assay

Five-week-old female BALB/c mice were randomly divided into 6

groups (n=6 per group) and immunized with the rBV protein at 0 and

21 days. Blood was collected weekly to detect the level of specific

antibody and neutralizing antibody levels were detected according to

the methods in previous study (Li et al., 2016). The mice were

euthanized on the fifth week and spleens were collected for

pathological analysis. Spleen lymphocytes were extracted with the

Mouse Spleen Lymphocyte Separation Kit (Solarbio, cat. P8860) and

the number of cells was cell numbers were adjusted to 1 × 106/ml with

RPMI1640 culture medium. The lymphocyte proliferation assay was

performed with inactivated hAd-7 as the specific stimulator and Con

A as the positive stimulator, as previously described (Han et al., 2021).

Extracted The extracted mouse spleen lymphocytes cells (2 ×

106 cells) were stained with anti-CD3, CD4, and CD8, and then

detected by flow cytometry. The cChanges in CD3+CD4+ and

CD3+CD8+ counts in each group of mice were determined. The

cCells were then stained with anti-IL-4 and IFN-g and flow

cytometry was used to detect changes in CD3+CD4+/IL-4/IFN-g
and CD3+CD8+/IL-4/IFN-g in each group of mice.
2.8 Clinical disease scores

Mice were observed daily for morphology, movement,

respiration, and body weight changes throughout the

experimental cycle, and a disease activity index (DAI) score was

established (Blattner et al., 2016): (a) weight loss (0 point: no loss; 1-

20 points: loss of 1-20%, 20 points: loss of over 20%; ); (b) Fur

condition (0 point: shining; 2 points: matte; 4 points: ruffled); (c)

Eyes condition (0 point: clear and clean; 3 points: unclean, closed);

(d) Posture (0 point: normal; 10 points: hunched; 20 points:

massively hunched); (e) Motility (0 point: normal; 1 point:

spontaneous but reduced; 2 points: moderately reduced activity; 5

points: motility only after stimulation; 10 points: lethargy; 20 points:

self-mutilation); (f) Respiratory condition (0 point: normal; 1 point:

slightly changed; 10 points: accelerated breathing + 30%

(tachypnoea); 20 points: strongly accelerated breathing + 50%);

The daily DAI score is the sum of six items: A, B, C, D, E and F.
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2.9 Histopathological scores

The histopathological scores of each tissue were as follows:

extremely mild or no - 0 point, mild - 1 point, moderate - 2 points

and severe - 3 points (Table 1).
2.10 Statistical analysis

All data are presented as the mean ± SD.We used GraphPadPrism

6.0 to perform statistical analysis or analysis of variance (ANOVA) of

unpaired double-tailed Student’s test. P < 0.05 is considered statistically

significant. *P < 0.05, **P < 0.01, ***P < 0.001.
3 Results

3.1 Expression and confirmation of
rBV-hexon protein

Using the insect expression system, we constructed a

recombinant baculovirus rBV expressing adenovirus type 7 hexon

protein (Figure 1A) and PCR amplification confirmed the

successful insertion of the hexon gene (2850 bp) (Figure 1B).

Subsequently, the recombinant protein rBV-hexon was obtained

by infecting SF-9 cells with rBV and subjected to western blot and

indirect immunofluorescence experiments with His-labeled

antibody. Successful expression of the hexon protein was

observed (Figures 1C, D).
3.2 Antigen uptake on rBV-hexon-treated
DCs

BMDCs were incubated with PBS, LPS or rBV-hexon and

stained with FITC-Dextran for analysis of DC antigen uptake.

The results showed that DCs cells in the PBS treatment group
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(△MFI=48933.64) had the highest antigen uptake, while DCs

cells in the rBV-hexon-treated group had significantly reduced

antigen uptake (△MFI=9139.25) (P <0.001), which was similar

to that in the LPS group (△MFI=6340.29) (Figure 2A).

Maturation begins when DCs cease taking up antigens, hence,

the data suggests that rBV-hexon can could induce dendritic

cell maturation.

3. The vaccine can promote DC maturation and induce

secretion of pro-inflammatory cytokines

DCs need the assistance of MHC II and the co-stimulatory

molecules CD80 and CD86 to participate in the antigen

presentation process. In the previous section, we demonstrated

that rBV-hexon could induce dendritic cell maturation. To

further verify if rBV-hexon affects the expression of DC surface

molecules, we first immunized the mice with rBV-hexon for three

days and then analyzed the expression levels of CD80, CD86, CD40

and MHCII in CD11c+ spleen lymphocytes by flow cytometry

(Figure 2B). After immunization with rBV-hexon, Compared with

PBS group, the expression of CD80, CD86, CD40, and MHCII was

significantly increased significantly after rBV-hexon immunization.

compared to the PBS group. The results indicate that rBV-hexon

promotes antigen presentation in vivo.

Subsequently, we analyzed the effect of rBV-hexon on the

expression of molecules on DCs surface in vitro. After incubating

BMDCs with PBS, LPS and rBV-hexon, we analyzed the

expression of MHC II, CD80, CD86 and CD40.We noted that

DCs in the rBV-hexon group showed significant surface marker

expression similar to that in the LPS group (Figure 2C). In

addition, DC antigen presentation is known to release large

quantities of pro-inflammatory cytokines. Therefore, we

analyzed the release of TNFa, IFNg, IL-6, and IL-12p70, and

found that rBV-hexon significantly increased the secretion of

these four cytokines (Figure 2D). These results indicated that

rBV-hexon could activate DC maturation and induce the release

of a large number of pro-inflammatory cytokines, which in turn

could promote the proliferation and differentiation of other

immune cells.
TABLE 1 Scoring standards of various tissues.

Lung

Alveolar atrophy collapse Alveolar wall thickening Cell degeneration Inflammatory cell infiltration bleed

Heart

Myocardial cell degeneration Inflammatory cell infiltration bleed

Liver

Hepatocyte degeneration Inflammatory cell infiltration fibrosis

Muscle

Cell degeneration Inflammatory cell infiltration bleed

Brain

Neuronal degeneration Glial cell hyperplasia Tissue edema

Kidney

Renal tubular dilatation/degeneration Cell degeneration Glomerular atrophy or enlargement Inflammatory cell infiltration
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3.3 Inhibition of TLR4 and NF-kB decreases
rBV-hexon-treated DC surface markers
and proinflammatory cytokine levels

Studies have shown that the LPS receptor (TLR4) can recognize

viral glycoprotein (Zhang et al., 2003), and that LPS-induced

cytokines are mainly associated with NF-kB downstream of the

TRL4 pathway (Kawai and Akira, 2011). In this study, we found

that the expression levels of rBV-hexon-activated DCs surface

markers were similar to those of LPS-activated DCs. Therefore, we

hypothesized that rBV-hexon might activate DCs via the TLR4/

NFkB pathway. In this study, we used inhibitors to inhibit TLR4 and

NF-kB and established that the expression level of DCs surface

markers was significantly decreased after PDTC (NF-kB inhibitor)

treatment, while only MHC II and CD86 positive cells were

significantly decreased after TAK242 (TLR4 inhibitor) treatment

(Figures 3A–D). In terms of cytokine production (Figures 3E–H),

both inhibitors inhibited the secretion of TNFa, IFNg and IL-6, while
TAK242 had a minor effect on IL-12p70. Then we analyzed the

expression of TRAF6, IKKa/b, IkBa and NF-kB proteins (Figure 3I).

The result shows that rBV-hexon can activate TRAF6 downstream of

TLR4, and then activate IKK. The phosphorylation of IK will activate

NF-kB signal transduction pathway. In conclusion, rBV-hexon

activates DCs maturation via the TLR4/NF-kB pathway.
3.4 The vaccine can improve specific
antibodies and neutralizing antibodies

Weekly tail vein blood collection and testing for specific

antibodies towards adenovirus type 7 were performed over the
Frontiers in Cellular and Infection Microbiology 05
mice immunization period (Figure 4A). During the immune period

of mice, blood was collected from the tail vein every week and

specific antibodies against adenovirus type 7 were tested

(Figure 4A). The results showed that the mouse specific antibody

titers of mice in the vaccine group was were significantly higher

(P <0.05) than that in those of the control group and the adjuvant

group. From the second week onwards, the effect of the high dose

vaccine group was superior to that of the low dose vaccine group,

and the adjuvant (Al(OH)3) was able to improve the specific

antibody levels induced by the vaccine (Figure 4B). We then

tested for neutralizing antibodies at two weeks after the initial

vaccine injection and found that the titer of neutralizing antibodies

was 1:50 after the first injection and improved to 1:150 after the

second immunization. The adjuvant was able to increase the level of

the neutralizing antibodies produced by the vaccine (Figure 4C).

The above results showed that the vaccine was able to produce high

levels of specific and neutralizing antibodies, demonstrating a high

level of immunogenicity.
3.5 Vaccine promotes the activation of
T lymphocytes

Spleen lymphocytes were isolated from immunized mice and

stimulated to induce lymphocyte proliferation. Compared to the

adjuvant group and control group, when treated with the

adenovirus type 7 antigen, the vaccine group could significantly

stimulate the specific proliferation of lymphocytes (P<0.01), but

there was no significant difference between the adjuvant and

control groups (P>0.05) (Figure 4D).
A B D

C

FIGURE 1

Construction of recombinant baculovirus carrying the Ad7-hexon gene and confirmation of the expressed adenovirus subunit vaccine type 7 rBV-

hexon. (A) The adenovirus type 7 hexon gene was inserted into the pFastBac™ HT A vector. (B) Insertion of the Adv7-hexon gene into the
recombinant baculovirus was confirmed by PCR. (C) An indirect immunofluorescence assay was performed to detect the expression of hexon
protein using His-labeled antibody. (D) The adenovirus type 7 hexon protein was detected by western blot. The arrow indicates a destination stripe
of 2850bp size.
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Lymphocyte typing showed that the proportion of CD4 and

CD8 positive cells in the vaccine group was significantly higher

(P <0.05) than that of the control group (Figures 5A, B; S1).

Furthermore, the levels of CD4+IFN-g and CD4+IL-4,

CD8+IFN-g and CD8+IL-4 in the vaccine group were higher

than those in the control group (Figures 5C–F; S2-3). We also

noted that the effectiveness of the vaccine improved in the

presence of adjuvant and taken together, these results show

that the vaccine is highly immunogenic in vivo. Pathological

examination of important organs and muscles at the injection

site of the immunized mice revealed no significant pathological

changes in the tissues of immunized mice compared to the

control group (Figures 5G, H). In addition, we can also find

from the DAI score of mice that the immunized vaccine did not

cause abnormal clinical symptoms in mice (Figures 5I, J). These
Frontiers in Cellular and Infection Microbiology 06
find ings imply tha t the rBV-hexon vacc ine i s sa f e

for administration.
4 Discussion

Human adenovirus type 7 is an unencapsulated, icosahedral,

double-stranded DNA virus. Because of its complex pathogenic

mechanism and limited knowledge of its genotype diversity and

protective antigens, there are no effective drugs and vaccines to

prevent and control respiratory tract infections caused by this virus.

Therefore, it is imperative to develop a safe and effective vaccine

against the virus as soon as possible. At present, the adenovirus type

7 vaccine is only available for military personnel and not for the

public. At present, the fastest way to develop a vaccine is to prepare
A

B

DC

FIGURE 2

DCs can be induced to absorb antigen and mature by recombinant subunit vaccine rBV-hexon. (A) Fluorescence intensity of DCs incubated with
PBS, LPS and rBV-hexon at 37°C was analyzed by flow cytometry. The samples at 4°C served as the negative control (Red). (B) Naïve mice (C57BL/6,
n=6) were immunized with rBV-hexon and PBS was used as a negative control. After 3 days of immunization, spleen lymphocytes were isolated, and
the percentages of CD80, CD86, CD40 and MHC-II expression in Dendritic cells were analyzed by flow cytometry. (C) BMDCs were incubated with
PBS, LPS and rBV-hexon and the expression of cell surface markers was detected by flow cytometry. (D) Cytokine secretion was detected by ELISA
after incubating BMDCs with PBS, lipopolysaccharide and rBV-hexon. The experiments were repeated with three independent experiments. Error
bars reflect the standard deviation (SD). *P < 0.05; **P < 0.01, ***P < 0.001. The arrow indicates that the mice were sacrificed on the third day. ns,
no significance.
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inactivated pathogenic microbes or proteins. However, these

strategies have their limitations, such as weakened viral-induced

immunogenicity and incomplete inactivation. For the prevention

and treatment of pericardial effusion syndrome, the recombinant

subunit vaccine provided better prevention and control of the

disease compared to a commercial inactivated vaccine available in

the market (Shah et al., 2012). Moreover, the production of subunit

vaccines has a number of advantages, that avoid the disadvantages

which can avoid the disadvantages of inactivated vaccines, of
Frontiers in Cellular and Infection Microbiology 07
inactivated vaccines such as the cost of antigen production,

unattenuated virulence and incomplete inactivation. Therefore,

recombinant protein subunit vaccines are expected to be more

ideal as new vaccines after attenuated live vaccines and

inactivated vaccines.

Within the capsid structure of the adenovirus, the hexon,

penton and fiber proteins contain adenovirus-specific antigenic

components, and the epitope located on the hexon protein is the

standard antigen used for diagnosis of different serotypes.
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FIGURE 3

Blocking TLR4 and NF-kB inhibits DC maturation. After treatment with TLR4 and NF-kB inhibitors, DC surface molecules CD80 (A), CD86 (B), CD40
(C) and MHC II (D) were detected by flow cytometry. ELISA was used to test the secretion of TNFa (E), IFNg (F), IL-6 (G) and IL-12p70 (H). (I) Whole cell
proteins were extracted, and the expression of key proteins in the TLR4/NF-kB pathway in macrophages was detected by Western blot. The experiments
were repeated over three independent experiments. Error bars represent the standard deviation (SD). *P < 0.05; **P < 0.01, ***P < 0.001. P < 0.05. ns,
no significance.
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Generally, the antigen components of mammalian adenoviruses

are most sensitive to the pressure of immune selection. Therefore,

in this study, the part of the human adenovirus type 7 that spans

the hexon was selected as the antigen to develop the subunit

vaccine. The recombinant subunit vaccine was constructed using

the Bac-to-Bac insect baculovirus expression system.

The antigen, after stimulating DCs, promoted DCs maturation

and the antigenic peptide-MHC molecular complex was presented

to naive T cells (Iwasaki and Medzhitov, 2015). During antigen

presentation, DCs not only up-regulated the expression of MHC II,

CD80 and CD86 to activate T cells, but also released a variety of

cytokines that affected the direction of T cells differentiation (Moser

and Murphy, 2000). For example, IL-12 and IFN-g promoted the

differentiation of primary CD4+T cells into Th1 cells and mediated

T-cell-assisted immune responses (Napolitani et al., 2005). Other

cytokines, such as TNFa and IL-6, play an important role in

the regulation of other immune cells (Moussion and Girard,

2011). Consistent with previous studies, the rBV-hexon was able

to promote DC maturation in vitro and induce DCs to secrete

a variety of cytokines, which enhanced antiviral and

immunomodulatory activities.

As mentioned above, we noted that the expression levels of

the rBV-hexon-activated DCs surface markers were similar to

those for LPS-activated DCs. The LPS receptor TLR4 can

recognize the viral glycoprotein (Zhang et al., 2003) and LPS-

induced cytokines are mainly related to NF-kB, downstream of

the TRL4-induced pathway (Kawai and Akira, 2011). As NF-kB
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can activate many pro-inflammatory cytokines including TNFa
and IL-6 (Kawai and Akira, 2011), we speculated that the TLR4/

NF-kB pathway might be involved in the activation of DCs by

rBV-hexon. As expected, the addition of the NF-kB inhibitor

significantly reduced DCs surface marker expression, whereas

while after the treatment of TLR4 inhibitor, only the number of

MHC II- and CD86-positive cells was significantly reduced after

treatment with the TLR4 inhibitor. In terms of cytokines, the two

inhibitors significantly inhibited the secretion of TNFa, IFNg and
IL-6. This indicated that TLR4 and NF-kB were involved in rBV-

hexon-activated DC maturation.

In subsequent in vivo experiments in mice, we found that rBV-

hexon significantly increased the titer of mouse serum anti-

adenovirus type 7 specific antibodies and neutralizing antibodies,

and promoted T-lymphocyte activation. In addition, pathological

examination of tissues harvested from immunized mice showed

that rBV-hexon did not induce any significant damage to the

muscles of various important organs and around the injection

site. Taken together, these factors propose the safety and high

immunogenicity of the subunit vaccine. A limitation of this study

is that we did not perform experiments on protection against virus

infection. We will establish an adenovirus type 7 working virus

model in further studies to verify the protective effect of rBV-hexon-

induced antibodies.

In conclusion, the recombinant subunit vaccine rBV-hexon

constructed in this study not only stimulated the maturation of

DCs, but also produced high titers of adenovirus specific antibodies
A B

DC

FIGURE 4

rBV-hexon increases specific and neutralizing antibody levels in vivo. (A) Mice (Balb/c, n=6) were immunized with 50mg rBV-hexon+Al(OH)3, 100mg
rBV-hexon+Al(OH)3, 50mg rBV-hexon or 100mg rBV-hexon, and PBS was used as the negative control. (B) Blood samples were collected weekly and
specific antibody titers were measured. (C) Detection of neutralizing antibody titers in the second week after primary and booster immunizations.
(D) Lymphocyte proliferation was analyzed after the isolation of mouse spleen lymphocytes. The experiments were repeated over three independent
experiments. Error bars represent standard deviation (SD). **P < 0.01, ***P < 0.001.
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and neutralizing antibodies in vivo, and promoted the activation of

T lymphocytes. These results provide experimental basis for future

studies into the development and validation of an adenovirus type 7

subunit vaccine in future.
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FIGURE 5

T-cell response induced by rBV-hexon inoculation. (A, B) Percentage of CD3+CD4+ and CD3+CD8+ cells in spleen lymphocytes detected by flow
cytometry. (C–F) CD4+ and CD8+ T-cell activation was evaluated by detecting secretion of IFN-g and IL-4. (G) HE staining was used to analyze the
pathological changes of various organs and tissues. (H) Histopathological scores of mice. (I) Weight change of mice. (J) DAI score of mice. The
experiments were repeated over three independent experiments. Error bars represent standard deviation (SD). *P < 0.05; **P < 0.01; #P < 0.05.
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