57,741 research outputs found

    Collapsing and static thin massive charged dust shells in a Reissner-Nordstr\"om black hole background in higher dimensions

    Full text link
    The problem of a spherically symmetric charged thin shell of dust collapsing gravitationally into a charged Reissner-Nordstr\"om black hole in dd spacetime dimensions is studied within the theory of general relativity. Static charged shells in such a background are also analyzed. First a derivation of the equation of motion of such a shell in a dd-dimensional spacetime is given. Then a proof of the cosmic censorship conjecture in a charged collapsing framework is presented, and a useful constraint which leads to an upper bound for the rest mass of a charged shell with an empty interior is derived. It is also proved that a shell with total mass equal to charge, i.e., an extremal shell, in an empty interior, can only stay in neutral equilibrium outside its gravitational radius. This implies that it is not possible to generate a regular extremal black hole by placing an extremal dust thin shell within its own gravitational radius. Moreover, it is shown, for an empty interior, that the rest mass of the shell is limited from above. Then several types of behavior of oscillatory charged shells are studied. In the presence of a horizon, it is shown that an oscillatory shell always enters the horizon and reemerges in a new asymptotically flat region of the extended Reissner-Nordstr\"om spacetime. On the other hand, for an overcharged interior, i.e., a shell with no horizons, an example showing that the shell can achieve a stable equilibrium position is presented. The results presented have applications in brane scenarios with extra large dimensions, where the creation of tiny higher dimensional charged black holes in current particle accelerators might be a real possibility, and generalize to higher dimensions previous calculations on the dynamics of charged shells in four dimensions.Comment: 21 pages, 2 figure

    Flux-induced isometry gauging in heterotic strings

    Get PDF
    We study the effect of flux-induced isometry gauging of the scalar manifold in N=2 heterotic string compactification with gauge fluxes. We show that a vanishing theorem by Witten provides the protection mechanism. The other ungauged isometries in hyper moduli space could also be protected, depending on the gauge bundle structure. We also discuss the related issue in IIB settin

    The Tolman-Bondi--Vaidya Spacetime: matching timelike dust to null dust

    Full text link
    The Tolman-Bondi and Vaidya solutions are two solutions to Einstein equations which describe dust particles and null fluid, respectively. We show that it is possible to match the two solutions in one single spacetime, the Tolman-Bondi--Vaidya spacetime. The new spacetime is divided by a null surface with Tolman-Bondi dust on one side and Vaidya fluid on the other side. The differentiability of the spacetime is discussed. By constructing a specific solution, we show that the metric across the null surface can be at least C1C^1 and the stress-energy tensor is continuous.Comment: 5 pages, no figur

    Magnetic fields of the W4 superbubble

    Full text link
    Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. New sensitive radio continuum observations were made at 6 cm, 11 cm, and 21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne , we obtain the thermal electron density ne = 1.0/\sqrt{fne} (\pm5%) cm^-3 and the strength of the line-of-sight component of the magnetic field B// = -5.0/\sqrt{fne} (\pm10%) {\mu}G (i.e. pointing away from us) within the western shell of the W4 superbubble. When the known tilted geometry of the W4 superbubble is considered, the total magnetic field Btot in its western shell is greater than 12 {\mu}G. The electron density and the magnetic field are lower and weaker in the high-latitude parts of the superbubble. The rotation measure is found to be positive in the eastern shell but negative in the western shell of the W4 superbubble, which is consistent with the case that the magnetic field in the Perseus arm is lifted up from the plane towards high latitudes. The magnetic field strength and the electron density we derived for the W4 superbubble are important parameters for evolution models of superbubbles breaking out of the Galactic plane.Comment: 13 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    Local conditions for the generalized covariant entropy bound

    Full text link
    A set of sufficient conditions for the generalized covariant entropy bound given by Strominger and Thompson is as follows: Suppose that the entropy of matter can be described by an entropy current sas^a. Let kak^a be any null vector along LL and skasas\equiv -k^a s_a. Then the generalized bound can be derived from the following conditions: (i) s2πTabkakbs'\leq 2\pi T_{ab}k^ak^b, where s'=k^a\grad_a s and TabT_{ab} is the stress energy tensor; (ii) on the initial 2-surface BB, s(0)1/4θ(0)s(0)\leq -{1/4}\theta(0), where θ\theta is the expansion of kak^a. We prove that condition (ii) alone can be used to divide a spacetime into two regions: The generalized entropy bound holds for all light sheets residing in the region where s<1/4θs<-{1/4}\theta and fails for those in the region where s>1/4θs>-{1/4}\theta. We check the validity of these conditions in FRW flat universe and a scalar field spacetime. Some apparent violations of the entropy bounds in the two spacetimes are discussed. These holographic bounds are important in the formulation of the holographic principle.Comment: 10 pages, 7 figure

    A Sino-German 6cm polarisation survey of the Galactic plane IX. HII regions

    Full text link
    Large-scale radio continuum surveys provide data to get insights into the physical properties of radio sources. HII regions are prominent radio sources produced by thermal emission of ionised gas around young massive stars. We identify and analyse HII regions in the Sino-German 6cm polarisation survey of the Galactic plane. Objects with flat radio continuum spectra together with infrared and/or Halpha emission were identified as HII regions. For HII regions with small apparent sizes, we cross-matched the 6cm small-diameter source catalogue with the radio HII region catalogue compiled by Paladini and the infrared HII region catalogue based on the WISE data. Extended HII regions were identified by eye by overlaying the Paladini and the WISE HII regions onto the 6cm survey images for coincidences. The TT-plot method was employed for spectral index verification. A total of 401 HII regions were identified and their flux densities were determined with the Sino-German 6cm survey data. In the surveyed area, 76 pairs of sources are found to be duplicated in the Paladini HII region catalogue, mainly due to the non-distinction of previous observations with different angular resolutions, and 78 objects in their catalogue are misclassified as HII regions, being actually planetary nebulae, supernova remnants or extragalactic sources that have steep spectra. More than 30 HII regions and HII region candidates from our 6cm survey data, especially extended ones, do not have counterparts in the WISE HII region catalogue, of which 9 are identified for the first time. Based on the newly derived radio continuum spectra and the evidence of infrared emission, the previously identified SNRs G11.1-1.0, G20.4+0.1 and G16.4-0.5 are believed to be HII regions.Comment: version after some minor corrections and language editing, full Table 2 - 5 will appear in CDS, accepted for publication in A&

    Microwave Slow-Wave Structure and Phase-Compensation Technique for Microwave Power Divider

    Get PDF
    In this paper, T-shaped electromagnetic bandgap is loaded on a coupled transmission line itself and its electric performance is studied. Results show that microwave slow-wave effect can be enhanced and therefore, size reduction of a transmission-line-based circuit is possible. However, the transmission-line-based circuits characterize varied phase responses against frequency, which becomes a disadvantage where constant phase response is required. Consequently, a phase-compensation technique is further presented and studied. For demonstration purpose, an 8-way coupled-line power divider with 22.5 degree phase shifts between adjacent output ports, based on the studied slow-wave structure and phase-compensation technique, is developed. Results show both compact circuit architecture and improved phase imbalance are realized, confirming the investigated circuit structures and analyzing methodologies

    Strongly Enhanced Hole-Phonon Coupling in the Metallic State of the Dilute Two-Dimensional Hole Gas

    Full text link
    We have studied the temperature dependent phonon emission rate PP(TT) of a strongly interacting (rsr_s\geq22) dilute 2D GaAs hole system using a standard carrier heating technique. In the still poorly understood metallic state, we observe that PP(TT) changes from PP(TT)T5\sim T^5 to PP(TT)T7\sim T^7 above 100mK, indicating a crossover from screened piezoelectric(PZ) coupling to screened deformation potential(DP) coupling for hole-phonon scattering. Quantitative comparison with theory shows that the long range PZ coupling between holes and phonons has the expected magnitude; however, in the metallic state, the short range DP coupling between holes and phonons is {\it almost twenty times stronger} than expected from theory. The density dependence of PP(TT) shows that it is {\it easier} to cool low density 2D holes in GaAs than higher density 2D hole systems.Comment: To appear in Phys. Rev. Let
    corecore