57,741 research outputs found
Collapsing and static thin massive charged dust shells in a Reissner-Nordstr\"om black hole background in higher dimensions
The problem of a spherically symmetric charged thin shell of dust collapsing
gravitationally into a charged Reissner-Nordstr\"om black hole in spacetime
dimensions is studied within the theory of general relativity. Static charged
shells in such a background are also analyzed. First a derivation of the
equation of motion of such a shell in a -dimensional spacetime is given.
Then a proof of the cosmic censorship conjecture in a charged collapsing
framework is presented, and a useful constraint which leads to an upper bound
for the rest mass of a charged shell with an empty interior is derived. It is
also proved that a shell with total mass equal to charge, i.e., an extremal
shell, in an empty interior, can only stay in neutral equilibrium outside its
gravitational radius. This implies that it is not possible to generate a
regular extremal black hole by placing an extremal dust thin shell within its
own gravitational radius. Moreover, it is shown, for an empty interior, that
the rest mass of the shell is limited from above. Then several types of
behavior of oscillatory charged shells are studied. In the presence of a
horizon, it is shown that an oscillatory shell always enters the horizon and
reemerges in a new asymptotically flat region of the extended
Reissner-Nordstr\"om spacetime. On the other hand, for an overcharged interior,
i.e., a shell with no horizons, an example showing that the shell can achieve a
stable equilibrium position is presented. The results presented have
applications in brane scenarios with extra large dimensions, where the creation
of tiny higher dimensional charged black holes in current particle accelerators
might be a real possibility, and generalize to higher dimensions previous
calculations on the dynamics of charged shells in four dimensions.Comment: 21 pages, 2 figure
Flux-induced isometry gauging in heterotic strings
We study the effect of flux-induced isometry gauging of the scalar manifold in N=2 heterotic string compactification with gauge fluxes. We show that a vanishing theorem by Witten provides the protection mechanism. The other ungauged isometries in hyper moduli space could also be protected, depending on the gauge bundle structure. We also discuss the related issue in IIB settin
The Tolman-Bondi--Vaidya Spacetime: matching timelike dust to null dust
The Tolman-Bondi and Vaidya solutions are two solutions to Einstein equations
which describe dust particles and null fluid, respectively. We show that it is
possible to match the two solutions in one single spacetime, the
Tolman-Bondi--Vaidya spacetime. The new spacetime is divided by a null surface
with Tolman-Bondi dust on one side and Vaidya fluid on the other side. The
differentiability of the spacetime is discussed. By constructing a specific
solution, we show that the metric across the null surface can be at least
and the stress-energy tensor is continuous.Comment: 5 pages, no figur
Magnetic fields of the W4 superbubble
Superbubbles and supershells are the channels for transferring mass and
energy from the Galactic disk to the halo. Magnetic fields are believed to play
a vital role in their evolution. We study the radio continuum and polarized
emission properties of the W4 superbubble to determine its magnetic field
strength. New sensitive radio continuum observations were made at 6 cm, 11 cm,
and 21 cm. The total intensity measurements were used to derive the radio
spectrum of the W4 superbubble. The linear polarization data were analysed to
determine the magnetic field properties within the bubble shells. The
observations show a multi-shell structure of the W4 superbubble. A flat radio
continuum spectrum that stems from optically thin thermal emission is derived
from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and
considering the filling factor fne , we obtain the thermal electron density ne
= 1.0/\sqrt{fne} (\pm5%) cm^-3 and the strength of the line-of-sight component
of the magnetic field B// = -5.0/\sqrt{fne} (\pm10%) {\mu}G (i.e. pointing away
from us) within the western shell of the W4 superbubble. When the known tilted
geometry of the W4 superbubble is considered, the total magnetic field Btot in
its western shell is greater than 12 {\mu}G. The electron density and the
magnetic field are lower and weaker in the high-latitude parts of the
superbubble. The rotation measure is found to be positive in the eastern shell
but negative in the western shell of the W4 superbubble, which is consistent
with the case that the magnetic field in the Perseus arm is lifted up from the
plane towards high latitudes. The magnetic field strength and the electron
density we derived for the W4 superbubble are important parameters for
evolution models of superbubbles breaking out of the Galactic plane.Comment: 13 pages, 8 figures, accepted for publication in Astronomy &
Astrophysic
Local conditions for the generalized covariant entropy bound
A set of sufficient conditions for the generalized covariant entropy bound
given by Strominger and Thompson is as follows: Suppose that the entropy of
matter can be described by an entropy current . Let be any null
vector along and . Then the generalized bound can be
derived from the following conditions: (i) , where
s'=k^a\grad_a s and is the stress energy tensor; (ii) on the initial
2-surface , , where is the expansion of
. We prove that condition (ii) alone can be used to divide a spacetime
into two regions: The generalized entropy bound holds for all light sheets
residing in the region where and fails for those in the region
where . We check the validity of these conditions in FRW flat
universe and a scalar field spacetime. Some apparent violations of the entropy
bounds in the two spacetimes are discussed. These holographic bounds are
important in the formulation of the holographic principle.Comment: 10 pages, 7 figure
A Sino-German 6cm polarisation survey of the Galactic plane IX. HII regions
Large-scale radio continuum surveys provide data to get insights into the
physical properties of radio sources. HII regions are prominent radio sources
produced by thermal emission of ionised gas around young massive stars. We
identify and analyse HII regions in the Sino-German 6cm polarisation survey of
the Galactic plane. Objects with flat radio continuum spectra together with
infrared and/or Halpha emission were identified as HII regions. For HII regions
with small apparent sizes, we cross-matched the 6cm small-diameter source
catalogue with the radio HII region catalogue compiled by Paladini and the
infrared HII region catalogue based on the WISE data. Extended HII regions were
identified by eye by overlaying the Paladini and the WISE HII regions onto the
6cm survey images for coincidences. The TT-plot method was employed for
spectral index verification. A total of 401 HII regions were identified and
their flux densities were determined with the Sino-German 6cm survey data. In
the surveyed area, 76 pairs of sources are found to be duplicated in the
Paladini HII region catalogue, mainly due to the non-distinction of previous
observations with different angular resolutions, and 78 objects in their
catalogue are misclassified as HII regions, being actually planetary nebulae,
supernova remnants or extragalactic sources that have steep spectra. More than
30 HII regions and HII region candidates from our 6cm survey data, especially
extended ones, do not have counterparts in the WISE HII region catalogue, of
which 9 are identified for the first time. Based on the newly derived radio
continuum spectra and the evidence of infrared emission, the previously
identified SNRs G11.1-1.0, G20.4+0.1 and G16.4-0.5 are believed to be HII
regions.Comment: version after some minor corrections and language editing, full Table
2 - 5 will appear in CDS, accepted for publication in A&
Microwave Slow-Wave Structure and Phase-Compensation Technique for Microwave Power Divider
In this paper, T-shaped electromagnetic bandgap is loaded on a coupled transmission line itself and its electric performance is studied. Results show that microwave slow-wave effect can be enhanced and therefore, size reduction of a transmission-line-based circuit is possible. However, the transmission-line-based circuits characterize varied phase responses against frequency, which becomes a disadvantage where constant phase response is required. Consequently, a phase-compensation technique is further presented and studied. For demonstration purpose, an 8-way coupled-line power divider with 22.5 degree phase shifts between adjacent output ports, based on the studied slow-wave structure and phase-compensation technique, is developed. Results show both compact circuit architecture and improved phase imbalance are realized, confirming the investigated circuit structures and analyzing methodologies
Strongly Enhanced Hole-Phonon Coupling in the Metallic State of the Dilute Two-Dimensional Hole Gas
We have studied the temperature dependent phonon emission rate () of a
strongly interacting (22) dilute 2D GaAs hole system using a standard
carrier heating technique. In the still poorly understood metallic state, we
observe that () changes from () to ()
above 100mK, indicating a crossover from screened piezoelectric(PZ) coupling to
screened deformation potential(DP) coupling for hole-phonon scattering.
Quantitative comparison with theory shows that the long range PZ coupling
between holes and phonons has the expected magnitude; however, in the metallic
state, the short range DP coupling between holes and phonons is {\it almost
twenty times stronger} than expected from theory. The density dependence of
() shows that it is {\it easier} to cool low density 2D holes in GaAs
than higher density 2D hole systems.Comment: To appear in Phys. Rev. Let
- …