67,324 research outputs found

    Can the nuclear symmetry potential at supra-saturation densities be negative?

    Full text link
    In the framework of an Isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, for the central 197^{197}Au+197^{197}Au reaction at an incident beam energy of 400 MeV/nucleon, effect of nuclear symmetry potential at supra-saturation densities on the pre-equilibrium clusters emission is studied. It is found that for the positive symmetry potential at supra-saturation densities the neutron to proton ratio of lighter clusters with mass number A≤3A\leq3 ((n/p)A≤3(n/p)_{A\leq3}) is larger than that of the weighter clusters with mass number A>3A>3 ((n/p)A>3(n/p)_{A>3}), whereas for the negative symmetry potential at supra-saturation densities the (n/p)A≤3(n/p)_{A\leq3} is \emph{smaller} than that of the (n/p)A>3(n/p)_{A>3}. This may be considered as a probe of the negative symmetry potential at supra-saturation densities.Comment: 5 pages, 3 figures, 1 table, to be publishe

    Simulation of the Spin Field Effect Transistors: Effects of Tunneling and Spin Relaxation on its Performance

    Get PDF
    A numerical simulation of spin-dependent quantum transport for a spin field effect transistor (spinFET) is implemented in a widely used simulator nanoMOS. This method includes the effect of both spin relaxation in the channel and the tunneling barrier between the source/drain and the channel. Account for these factors permits setting more realistic performance limits for the transistor, especially the magnetoresistance, which is found to be lower compared to earlier predictions. The interplay between tunneling and spin relaxation is elucidated by numerical simulation. Insertion of the tunneling barrier leads to an increased magnetoresistance. Numerical simulations are used to explore the tunneling barrier design issues.Comment: 31 pages, 14 figures, submitted to Journal of Applied Physic

    Molecular gas in extreme star-forming environments: the starbursts Arp220 and NGC6240 as case studies

    Full text link
    We report single-dish multi-transition measurements of the 12^CO, HCN, and HCO^+ molecular line emission as well as HNC J=1-0 and HNCO in the two ultraluminous infra-red galaxies Arp220 and NGC6240. Using this new molecular line inventory, in conjunction with existing data in the literature, we compiled the most extensive molecular line data sets to date for such galaxies. The many rotational transitions, with their different excitation requirements, allow the study of the molecular gas over a wide range of different densities and temperatures with significant redundancy, and thus allow good constraints on the properties of the dense gas in these two systems. The mass (~(1-2) x 10^10 Msun) of dense gas (>10^5-6 cm^-3) found accounts for the bulk of their molecular gas mass, and is consistent with most of their IR luminosities powered by intense star bursts while self-regulated by O,B star cluster radiative pressure onto the star-forming dense molecular gas. The highly excited HCN transitions trace a gas phase ~(10-100)x denser than that of the sub-thermally excited HCO^+ lines (for both galaxies). These two phases are consistent with an underlying density-size power law found for Galactic GMCs (but with a steeper exponent), with HCN lines tracing denser and more compact regions than HCO^+. Whether this is true in IR-luminous, star forming galaxies in general remains to be seen, and underlines the need for observations of molecular transitions with high critical densities for a sample of bright (U)LIRGs in the local Universe -- a task for which the HI-FI instrument on board Herschel is ideally suited to do.Comment: 38 pages (preprint ApJ style), 3 figures, accepted for Ap

    Close Pairs as Proxies for Galaxy Cluster Mergers

    Full text link
    Galaxy cluster merger statistics are an important component in understanding the formation of large-scale structure. Unfortunately, it is difficult to study merger properties and evolution directly because the identification of cluster mergers in observations is problematic. We use large N-body simulations to study the statistical properties of massive halo mergers, specifically investigating the utility of close halo pairs as proxies for mergers. We examine the relationship between pairs and mergers for a wide range of merger timescales, halo masses, and redshifts (0<z<1). We also quantify the utility of pairs in measuring merger bias. While pairs at very small separations will reliably merge, these constitute a small fraction of the total merger population. Thus, pairs do not provide a reliable direct proxy to the total merger population. We do find an intriguing universality in the relation between close pairs and mergers, which in principle could allow for an estimate of the statistical merger rate from the pair fraction within a scaled separation, but including the effects of redshift space distortions strongly degrades this relation. We find similar behavior for galaxy-mass halos, making our results applicable to field galaxy mergers at high redshift. We investigate how the halo merger rate can be statistically described by the halo mass function via the merger kernel (coagulation), finding an interesting environmental dependence of merging: halos within the mass resolution of our simulations merge less efficiently in overdense environments. Specifically, halo pairs with separations less than a few Mpc/h are more likely to merge in underdense environments; at larger separations, pairs are more likely to merge in overdense environments.Comment: 12 pages, 9 figures; Accepted for publication in ApJ. Significant additions to text and two figures changed. Added new findings on the universality of pair mergers and added analysis of the effect of FoF linking length on halo merger

    Local conditions for the generalized covariant entropy bound

    Full text link
    A set of sufficient conditions for the generalized covariant entropy bound given by Strominger and Thompson is as follows: Suppose that the entropy of matter can be described by an entropy current sas^a. Let kak^a be any null vector along LL and s≡−kasas\equiv -k^a s_a. Then the generalized bound can be derived from the following conditions: (i) s′≤2πTabkakbs'\leq 2\pi T_{ab}k^ak^b, where s'=k^a\grad_a s and TabT_{ab} is the stress energy tensor; (ii) on the initial 2-surface BB, s(0)≤−1/4θ(0)s(0)\leq -{1/4}\theta(0), where θ\theta is the expansion of kak^a. We prove that condition (ii) alone can be used to divide a spacetime into two regions: The generalized entropy bound holds for all light sheets residing in the region where s<−1/4θs<-{1/4}\theta and fails for those in the region where s>−1/4θs>-{1/4}\theta. We check the validity of these conditions in FRW flat universe and a scalar field spacetime. Some apparent violations of the entropy bounds in the two spacetimes are discussed. These holographic bounds are important in the formulation of the holographic principle.Comment: 10 pages, 7 figure

    Small Tribes, Big Gains: The Strategic Uses of Gender Quotas in the Middle East

    Get PDF
    This is the author accepted manuscript. The final version is available from City University of New York via the DOI in this recordWhy do some political actors nominate women more than others in the Muslim world? This article argues that certain social groups have an instrumental demand for female candidates because they believe such candidates will enhance their electoral chances in the wake of gender quotas’ adoption. Looking at Jordan, it hypothesizes that small tribes can make big gains by nominating women due to the design of the country’s reserved seat quota. This argument complements existing perspectives on women’s (under-)representation in the Muslim world, which emphasize the role of features of the culture, economy, or religion. The analysis of original data on Jordan’s local elections and tribes supports the argument. The article’s findings have implications for our understanding of women’s representation, tribal politics, and authoritarian elections

    Maximum relative excitation of a specific vibrational mode via optimum laser pulse duration

    Get PDF
    For molecules and materials responding to femtosecond-scale optical laser pulses, we predict maximum relative excitation of a Raman-active vibrational mode with period T when the pulse has an FWHM duration of 0.42 T. This result follows from a general analytical model, and is precisely confirmed by detailed density-functional-based dynamical simulations for C60 and a carbon nanotube, which include anharmonicity, nonlinearity, no assumptions about the polarizability tensor, and no averaging over rapid oscillations within the pulse. The mode specificity is, of course, best at low temperature and for pulses that are electronically off-resonance, and the energy deposited in any mode is proportional to the fourth power of the electric field.Comment: 5 pages, 4 figure
    • …
    corecore