8,203 research outputs found

    Hydroxymethyl furfural in chinese herbal medicines: Its formation, presence, metabolism, bioactivities and implications

    Get PDF
    Background: Chinese herbal medicines (CHMs) must be processed before being prescribed to patients. During the processing, some CHMs became brown and as such 5-hydroxymethyl furfural (HMF) generated. Increasing attention is being paid to the safety and effectiveness of HMF.Methods: This paper summarized previous and recent reports on HMF formation, its presence in CHMs, its metabolism and bioactivities, together with its implications for CHMs.Results: HMF had been detected in 41 CHMs, and increased by about 12~1200 times after heat processing in some CHMs. Current data showed that HMF has limited genotoxicity but various bioactivities, such as anti-oxidative, anti-apoptotic, anti-inflammatory, anti-hypoxic, anti-microbial, and inhibiting sickling of red blood cells.Conclusion: Accumulation of HMF during heat processing of CHMs indicates that Maillard reaction and caramelization occurred. The other products of the two browning reactions deserve more attention in the following investigations on heat processed CHM.Keywords: hydroxymethyl furfural, Chinese herbal medicine, Maillard reaction, caramelization

    Recent Advances of Aqueous Electrolytes for Zinc-Ion Batteries to Mitigate Side Reactions: A Review

    Get PDF
    The paper discusses the challenges associated with the performance of zinc-ion batteries (ZIBs), such as side reactions that lead to reduced capacity and lifespan. The strategies for mitigating side reactions in ZIBs, including additives, electrolyte-electrode interface modification, and electrolyte composition optimization, are explored. Combinations of these approaches may be necessary to achieve the best performance for ZIBs. However, continued research is needed to improve the commercial viability of ZIBs. Areas of research requiring attention include the understanding of the mechanisms behind side reactions in ZIBs and the development of cost-effective and scalable manufacturing processes for ZIBs with available electrolyte. By developing effective strategies for mitigating side reactions, researchers can improve the efficiency and lifespan of ZIBs, making them more competitive with lithium-ion batteries in various applications, including grid energy storage

    Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex.

    Get PDF
    During vaccinia virus morphogenesis, intracellular mature virus (IMV) particles are wrapped by a double lipid bilayer to form triple enveloped virions called intracellular enveloped virus (IEV). IEV are then transported to the cell surface where the outer IEV membrane fuses with the cell membrane to expose a double enveloped virion outside the cell. The F12, E2 and A36 proteins are involved in transport of IEVs to the cell surface. Deletion of the F12L or E2L genes causes a severe inhibition of IEV transport and a tiny plaque size. Deletion of the A36R gene leads to a smaller reduction in plaque size and less severe inhibition of IEV egress. The A36 protein is present in the outer membrane of IEVs, and over-expressed fragments of this protein interact with kinesin light chain (KLC). However, no interaction of F12 or E2 with the kinesin complex has been reported hitherto. Here the F12/E2 complex is shown to associate with kinesin-1 through an interaction of E2 with the C-terminal tail of KLC isoform 2, which varies considerably between different KLC isoforms. siRNA-mediated knockdown of KLC isoform 1 increased IEV transport to the cell surface and virus plaque size, suggesting interaction with KLC isoform 1 is somehow inhibitory of IEV transport. In contrast, knockdown of KLC isoform 2 did not affect IEV egress or plaque formation, indicating redundancy in virion egress pathways. Lastly, the enhancement of plaque size resulting from loss of KLC isoform 1 was abrogated by removal of KLC isoforms 1 and 2 simultaneously. These observations suggest redundancy in the mechanisms used for IEV egress, with involvement of KLC isoforms 1 and 2, and provide evidence of interaction of F12/E2 complex with the kinesin-1 complex.This work was supported by grant G1000207 from the Medical Research Council, UK and grant 090315 from The Wellcome Trust. GLS is a Wellcome Trust Principal research Fellow. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final published version. It first appeared at http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004723

    Managing clinical uncertainty in older people towards the end of life: a systematic review of person-centred tools.

    Get PDF
    BACKGROUND: Older people with multi-morbidities commonly experience an uncertain illness trajectory. Clinical uncertainty is challenging to manage, with risk of poor outcomes. Person-centred care is essential to align care and treatment with patient priorities and wishes. Use of evidence-based tools may support person-centred management of clinical uncertainty. We aimed to develop a logic model of person-centred evidence-based tools to manage clinical uncertainty in older people. METHODS: A systematic mixed-methods review with a results-based convergent synthesis design: a process-based iterative logic model was used, starting with a conceptual framework of clinical uncertainty in older people towards the end of life. This underpinned the methods. Medline, PsycINFO, CINAHL and ASSIA were searched from 2000 to December 2019, using a combination of terms: "uncertainty" AND "palliative care" AND "assessment" OR "care planning". Studies were included if they developed or evaluated a person-centred tool to manage clinical uncertainty in people aged ≥65 years approaching the end of life and quality appraised using QualSyst. Quantitative and qualitative data were narratively synthesised and thematically analysed respectively and integrated into the logic model. RESULTS: Of the 17,095 articles identified, 44 were included, involving 63 tools. There was strong evidence that tools used in clinical care could improve identification of patient priorities and needs (n = 14 studies); that tools support partnership working between patients and practitioners (n = 8) and that tools support integrated care within and across teams and with patients and families (n = 14), improving patient outcomes such as quality of death and dying and satisfaction with care. Communication of clinical uncertainty to patients and families had the least evidence and is challenging to do well. CONCLUSION: The identified logic model moves current knowledge from conceptualising clinical uncertainty to applying evidence-based tools to optimise person-centred management and improve patient outcomes. Key causal pathways are identification of individual priorities and needs, individual care and treatment and integrated care. Communication of clinical uncertainty to patients is challenging and requires training and skill and the use of tools to support practice

    Thickness dependence of microstructures in La0.8Ca0.2MnO3 thin films

    Get PDF
    The thickness dependence of microstructures of La0.8Ca0.2MnO3 (LCMO)/SrTiO3 (STO) thin films was investigated by high-resolution x-ray diffraction, small angle x-ray reflection, grazing incidence x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results show that all the LCMO films are well oriented in (00l) direction perpendicular to the substrate surface. Self-organized crystalline grains with a tetragonal shape are uniformly distributed on the film surface, indicating the deposition condition being of benefit to the formation of the crystalline grains. With increasing the film thickness, the crystalline quality of the LCMO film is improved, while the surface becomes rougher. There exists a nondesigned cap layer on the upper surface of the LCMO layer for all the samples. The mechanism is discussed briefly.published_or_final_versio

    Gauge links for transverse momentum dependent correlators at tree-level

    Get PDF
    In this paper we discuss the incorporation of gauge links in hadronic matrix elements that describe the soft hadronic physics in high energy scattering processes. In this description the matrix elements appear in soft correlators and they contain non-local combinations of quark and gluon fields. In our description we go beyond the collinear approach in which case also the dependence on transverse momenta of partons is taken into consideration. The non-locality in the transverse direction leads to a complex gauge link structure for the full process, in which color is entangled, even at tree-level. We show that at tree-level in a 1-parton unintegrated (1PU) situation, in which only the transverse momentum of one of the initial state hadrons is relevant, one can get a factorized expression involving transverse momentum dependent (TMD) distribution functions. We point out problems at the level of two initial state hadrons, even for relatively simple processes such as Drell-Yan scattering.Comment: 25 pages, corrected typos and updated reference

    Charged Dilatonic AdS Black Branes in Arbitrary Dimensions

    Full text link
    We study electromagnetically charged dilatonic black brane solutions in arbitrary dimensions with flat transverse spaces, that are asymptotically AdS. This class of solutions includes spacetimes which possess a bulk region where the metric is approximately invariant under Lifshitz scalings. Given fixed asymptotic boundary conditions, we analyze how the behavior of the bulk up to the horizon varies with the charges and derive the extremality conditions for these spacetimes.Comment: References update

    Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State

    Get PDF
    Superhydrophobic pillar arrays, which can generate the droplet pancake bouncing phenomenon with reduced liquid-solid contact time, have huge application prospects in anti-icing of aircraft wings from freezing rain. However, the previously reported pillar arrays, suitable for obtaining pancake bouncing, have a diameter ≤100 μm and height-diameter ratio >10, which are difficult to fabricate over a large area. Here, we have systematically studied the influence of the dimension of the superhydrophobic pillar arrays on the bouncing dynamics of water droplets. We show that the typical pancake bouncing with 57.8% reduction in contact time with the surface was observed on the superhydrophobic pillar arrays with 1.05 mm diameter, 0.8 mm height, and 0.25 mm space. Such pillar arrays with millimeter diameter and <1 height-diameter ratio can be easily fabricated over large areas. Further, a simple replication-spraying method was developed for the large-area fabrication of the superhydrophobic pillar arrays to induce pancake bouncing. No sacrificial layer was needed to reduce the adhesion in the replication processes. Since the bouncing dynamics were rather sensitive to the space between the pillars, a method to control the contact time, bouncing shape, horizontal bouncing direction, and reversible switch between pancake bouncing and conventional bouncing was realized by adjusting the inclination angle of the shape memory polymer pillars

    Laser powder bed fusion of high-strength and corrosion-resistant Inconel alloy 725

    Get PDF
    The development of additive manufacturing, or three-dimensional (3D) printing, technologies has produced breakthroughs in the design and manufacturing of products by enhancing design freedom and minimising manufacturing steps. In addition, the complex, unique microstructures imparted by the additive processes offer prospects of unprecedented advances to produce high-performance metal alloys for high-temperature and corrosive environments. Here, we present the first additive manufacturing of Inconel alloy 725, an advanced nickel-base superalloy that is the widely accepted gold standard material of choice for oil and gas, chemical, and marine applications. We explore the printability of Inconel alloy 725 and identify a wide processing space to build material with a crack- and near-pore-free microstructure. The conventionally heat-treated Inconel alloy 725 has an equiaxed, near-fully recrystallised microstructure containing copious twin boundaries and nano-precipitates. It also displays promising tensile properties and corrosion resistance compared to its wrought counterpart. Our work opens the door toward additive manufacturing of Inconel alloy 725 components with optimised microstructure and topology geometry for applications in harsh environments
    • …
    corecore