82 research outputs found

    Symmetry degree measurement and its applications to anomaly detection

    Get PDF
    IEEE Anomaly detection is an important technique used to identify patterns of unusual network behavior and keep the network under control. Today, network attacks are increasing in terms of both their number and sophistication. To avoid causing significant traffic patterns and being detected by existing techniques, many new attacks tend to involve gradual adjustment of behaviors, which always generate incomplete sessions due to their running mechanisms. Accordingly, in this work, we employ the behavior symmetry degree to profile the anomalies and further identify unusual behaviors. We first proposed a symmetry degree to identify the incomplete sessions generated by unusual behaviors; we then employ a sketch to calculate the symmetry degree of internal hosts to improve the identification efficiency for online applications. To reduce the memory cost and probability of collision, we divide the IP addresses into four segments that can be used as keys of the hash functions in the sketch. Moreover, to further improve detection accuracy, a threshold selection method is proposed for dynamic traffic pattern analysis. The hash functions in the sketch are then designed using Chinese remainder theory, which can analytically trace the IP addresses associated with the anomalies. We tested the proposed techniques based on traffic data collected from the northwest center of CERNET (China Education and Research Network); the results show that the proposed methods can effectively detect anomalies in large-scale networks

    Scalable Graphene Aptasensors for Drug Quantification

    Full text link
    Simpler and more rapid approaches for therapeutic drug-level monitoring are highly desirable to enable use at the point-of-care. We have developed an all-electronic approach for detection of the HIV drug tenofovir based on scalable fabrication of arrays of graphene field-effect transistors (GFETs) functionalized with a commercially available DNA aptamer. The shift in the Dirac voltage of the GFETs varied systematically with the concentration of tenofovir in deionized water, with a detection limit less than 1 ng/mL. Tests against a set of negative controls confirmed the specificity of the sensor response. This approach offers the potential for further development into a rapid and convenient point-of-care tool with clinically relevant performance.Comment: 7 pages, 2 figure

    Grape seed proanthocyanidin extract targets p66Shc to regulate mitochondrial biogenesis and dynamics in diabetic kidney disease

    Get PDF
    Mitochondrial biogenesis and dynamics are associated with renal mitochondrial dysfunction and the pathophysiological development of diabetic kidney disease (DKD). Decreased p66Shc expression prevents DKD progression by significantly regulating mitochondrial function. Grape seed proanthocyanidin extract (GSPE) is a potential therapeutic medicine for multiple kinds of diseases. The effect of GSPE on the mitochondrial function and p66Shc in DKD has not been elucidated. Hence, we decided to identify p66Shc as a therapeutic target candidate to probe whether GSPE has a renal protective effect in DKD and explored the underlying mechanisms. Methods. In vivo, rats were intraperitoneally injected with streptozotocin (STZ) and treated with GSPE. Biochemical changes, mitochondrial morphology, the ultrastructure of nephrons, and protein expression of mitochondrial biogenesis (SIRT1, PGC-1α, NRF1, TFAM) and dynamics (DRP1, MFN1) were determined. In vitro, HK-2 cells were transfected with p66Shc and treated with GSPE to evaluate changes in cell apoptosis, reactive oxygen species (ROS), mitochondrial quality, the protein expression. Results. In vivo, GSPE significantly improved the renal function of rats, with less proteinuria and a lower apoptosis rate in the injured renal tissue. Besides, GSPE treatment increased SIRT1, PGC-1α, NRF1, TFAM, and MFN1 expression, decreased p66Shc and DRP1 expression. In vitro, overexpression of p66Shc decreased the resistance of HK-2 cells to high glucose toxicity, as shown by increased apoptosis and ROS production, decreased mitochondrial quality and mitochondrial biogenesis, and disturbed mitochondrial dynamic homeostasis, ultimately leading to mitochondrial dysfunction. While GSPE treatment reduced p66Shc expression and reversed these changes. Conclusion. GSPE can maintain the balance between mitochondrial biogenesis and dynamics by negatively regulating p66Shc expression

    Effects of Different Pickling Methods on the Water Retention and Protein Oxidation of Salted Goose Raw Material

    Get PDF
    This study aimed to investigate the impact of different pickling methods on the water retention and protein structure of salted goose raw material. Five pickling methods, namely conventional curing, vacuum tumbling curing, ultrasound curing, ultrasound combined with tumbling curing, and salt and tumbling curing, were employed, with a curing duration of 2 hours. The cured goose meat samples were analyzed for cooking loss, centrifugal loss, microstructure, as well as the carbonyl content, surface hydrophobicity, total sulfhydryl content, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the myofibrillar proteins. The results indicated that the ultrasound combined with tumbling curing method exhibited superior water-holding capacity, resulting in significant enhancement of the tenderness of goose meat. Additionally, this curing method caused the most notable damage to the microstructure of muscle fibers. The myofibrillar proteins in the ultrasound combined with tumbling cured goose meat exhibited lower surface hydrophobicity (5.17 μg) and carbonyl content (0.92 nmol/mg) compared to the vacuum tumbling, salt and tumbling, and ultrasound curing groups. Conversely, the total sulfhydryl content was highest (87.9 nmol/mg), indicating lower protein oxidation levels. SDS-PAGE analysis revealed prominent diffusion of protein bands at the 43 kDa position and denser bands between 26 and 43 kDa for the ultrasound combined with tumbling cured samples, indicating protein degradation. In conclusion, ultrasound combined with tumbling curing represents the optimum curing method

    The Physiological and Agronomic Responses to Nitrogen Dosage in Different Sugarcane Varieties

    Get PDF
    Nitrogen (N) is very important for sugarcane yield improvement, but the excessive application of N fertilizer brings about N pollution and a cost increase. Through distinguishing the difference of nitrogen use efficiency (NUE), we can reasonably apply N fertilizer according to the NUE characteristics of sugarcane varieties, and thus reduce N loss and maintain high yield. The present study showed the pot experiment results of identifying NUE types of nine main sugarcane varieties in the main sugarcane producing areas of China under controlled conditions, and identified the key physiological and agronomic indictors which can help to determine the NUE types of sugarcane. The test clones were exposed to varying levels of N fertilizer and 15 parameters that are likely to impact NUE were measured. The key results are (1) Sugarcane variety ROC22 has the high plant dry weight (PDW) and NUE among nine varieties under different N rates, it can take advantages under low N supply (225 kg/hm2 urea), and less N fertilizer can be applied properly in production. (2) Varieties of GT32 was good performing genotype for PDW and NUE under low N supply (225 kg/hm2 urea), GT42 was more suitable for moderate N environment (450 kg/hm2 urea), while YT94-128 was at middle N and high N supply (450–675 kg/hm2 urea). (3) Late stage of shoot elongation is suitable for differentiating sugarcane clones for NUE. (4) Leaf glutamine synthetase activity is the most reliable predictor of NUE in sugarcane. The result of pot experiment is sufficient to differentiate clonal variation for NUE in sugarcane as it reflects field experimental results. This study can set up a basis for identification the NUE types of sugarcane varieties and the development of reasonable N fertilizer application

    Identification of two rare NPRL3 variants in two Chinese families with familial focal epilepsy with variable foci 3: NGS analysis with literature review

    Get PDF
    Background: The GAP Activity Towards Rags 1 (GATOR1) complex, which includes DEPDC5, NPRL2, and NPRL3, plays a key role in epilepsy. It has been reported that focal epilepsy is associated with mutations in the NPRL3 gene in some cases. We report two rare mutations in the NPRL3 gene in two unrelated Chinese families with focal epilepsy in this study.Methods: The proband and her brother in family E1 first experienced seizures at 1.5 and 6 years of age, respectively. Despite resection of epileptogenic foci, she still suffered recurrent seizures. The first seizure of a 20-year-old male proband in family E2 occurred when he was 2 years old. To identify pathogenic variants in these families, whole-exome sequencing (WES) was performed on genomic DNA from peripheral blood.Results: In family E1, the trio-WES analysis of the proband and her brother without apparent structural brain abnormalities identified a heterozygous variant in the NPRL3 gene (c.954C>A, p.Y318*, NM_001077350.3). In family E2, the proband carried a heterozygous NPRL3 mutation (c.1545-1G>C, NM_001077350.3). Surprisingly, the mothers of the two probands each carried the variants, but neither had an attack. Bioinformatics analysis predicted that the mutation (c.954C>A) was in the highly conserved amino acid residues of NPRL3, which affected the α-helix of NPRL3 protein, leading to a truncated protein. The splice variant (c.1545-1G>C) resulted in the loss of the last exon of the NPRL3 gene.Conclusion: The results of this study provide a foundation for diagnosing NPRL3-related epilepsy by enriching their genotypes and phenotypes and help us identify the genetic etiologies of epilepsy in these two families

    Space advanced technology demonstration satellite

    Get PDF
    The Space Advanced Technology demonstration satellite (SATech-01), a mission for low-cost space science and new technology experiments, organized by Chinese Academy of Sciences (CAS), was successfully launched into a Sun-synchronous orbit at an altitude of similar to 500 km on July 27, 2022, from the Jiuquan Satellite Launch Centre. Serving as an experimental platform for space science exploration and the demonstration of advanced common technologies in orbit, SATech-01 is equipped with 16 experimental payloads, including the solar upper transition region imager (SUTRI), the lobster eye imager for astronomy (LEIA), the high energy burst searcher (HEBS), and a High Precision Magnetic Field Measurement System based on a CPT Magnetometer (CPT). It also incorporates an imager with freeform optics, an integrated thermal imaging sensor, and a multi-functional integrated imager, etc. This paper provides an overview of SATech-01, including a technical description of the satellite and its scientific payloads, along with their on-orbit performance
    • …
    corecore