2,150 research outputs found

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    Constructing the Equation of State of QCD in a functional QCD based scheme

    Full text link
    We construct the equation of state (EoS) of QCD based on the finite chemical potential information from the functional QCD approaches, with the assistance of the lattice QCD EoS. The obtained EoS is consistent with the up-to-date estimations of the QCD phase diagram, including a phase transition temperature at zero chemical potential of T=155T=155 MeV, the curvature of the transition line κ=0.016\kappa=0.016 and also a critical end point at (T,μB)=(118,600)(T,\mu_B)=(118, 600) MeV. In specific, the phase diagram mapping is achieved by incorporating the order parameters into the EoS, namely the dynamical quark mass for the chiral phase transition together with the Polyakov loop parameter for the deconfinement phase transition. We also implement the EoS in hydrodynamic simulations to compute the particle yields, ratios and collective flow, and find that our obtained EoS agrees well with the commonly used one based on the combination of lattice QCD simulation and hadron resonance gas model.Comment: 8 pages, 12 figure

    IL28B is associated with outcomes of chronic HBV infection

    Get PDF
    Purpose The role of IL28B gene variants and expression in hepatitis B virus (HBV) infections are not well understood. Here, we evaluated whether IL28B gene expression and rs12979860 variations are associated with HBV outcomes. Materials and Methods IL28B genetic variations (rs12979860) were genotyped by pyrosequencing of DNA samples from 137 individuals with chronic HBV infection [50 inactive carriers (IC), 34 chronic hepatitis B (CHB), 27 cirrhosis, 26 hepatocellular carcinoma (HCC)], and 19 healthy controls. IL28A/B mRNA expression in peripheral blood mononuclear cells was determined by qRT-PCR, and serum IL28B protein was measured by ELISA. Results Patients with IL28B C/C genotype had greater IL28A/B mRNA expression and higher IL28B protein levels than C/T patients. Within the various disease stages, compared to IC and healthy controls, IL28B expression was reduced in the CHB, cirrhosis, and HCC cohorts (CHB vs. IC, p=0.02; cirrhosis vs. IC, p=0.01; HCC vs. IC, p=0.001; CHB vs. controls, p&#60;0.01; cirrhosis vs. controls, p&#60;0.01; HCC vs. controls, p&#60;0.01). When stratified with respect to serum HBV markers in the IC and CHB cohorts, IL28B mRNA and protein levels were higher in HBeAg-positive than negative individuals (p=0.01). Logistic regression analysis revealed that factors associated with high IL28B protein levels were C/C versus C/T genotype [p=0.016, odds ratio (OR)=0.25, 95% confidence interval (CI)=0.08-0.78], high alanine aminotransferase values (p&#60;0.001, OR=8.02, 95% CI=2.64-24.4), and the IC stage of HBV infection (p&#60;0.001). Conclusion Our data suggest that IL28B genetic variations may play an important role in long-term development of disease in chronic HBV infections.</p

    Under the Non-Uniform Ground Stress Condition for Simulating the Casing Deformation

    Get PDF
    To the issue about the casing deformation, the paper main study the casing deformation law under the non-uniform ground stress condition, by the ways that the finite element software. The results of the study shows that under the non-uniform ground stress condition, the casing maximum deformation is parallel to the maximum horizontal stress direction. With the increase of the difference between maximum horizontal stress and minimum horizontal stress, the casing deformation increase gradually. And with the elasticity modulus of rock and the Poisson’s ratio of formation increase, the maximum deformation is lessen. The elasticity modulus of rock have more effect than the Poisson’s ratio of formation. When the elasticity modulus of rock exceed a certain threshold, casing deformation would not be effected by the elasticity modulus of rock.Key words: Non-uniform ground stress; Casing deformation; The elasticity modulus of rock; The Poisson’s ratio of formatio

    CTLA-4 Gene Polymorphism and the Risk of Systemic Lupus Erythematosus in the Chinese Population

    Get PDF
    Several variants of CTLA-4 have been reported to be associated with susceptibility systemic lupus erythematosus (SLE); however, findings have been inconsistent across different populations. Using a case-control study design, we have investigated the role of CTLA-4 polymorphism at positions −1661 and −1722 on SLE susceptibility in our Chinese SLE population in central China's Hubei province. Samples were collected from 148 SLE patients and 170 healthy controls. Polymerase chain reaction restriction fragments length polymorphism (PCR-RFLP) was used to analyze the genotypes of the two sites. Statistically significant difference was observed in genotypes for −1722, but not for −1661. The frequency of the T allele on the −1722 SNP was significantly increased in SLE patients: 57.8% versus 40.6% in controls (P < 0.001, OR = 2.002). While the detected C allele frequency in the controls was significantly elevated in comparison to that in the SLE patients (59.4% versus 42.2%). On the contrary, no association was found between SLE and CTLA-4 polymorphism at position −1661

    Survival Outcomes of Patients with Esophageal Cancer Who Did Not Proceed to Surgery after Neoadjuvant Treatment

    Get PDF
    Background: This retrospective study examined outcomes in esophageal squamous cell carcinoma (ESCC) patients who did not undergo surgical resection after neoadjuvant chemoradiotherapy (nCRT). Methods: Patients receiving nCRT between 2012 and 2020 were divided into two groups: group 1 (scheduled surgery) and group 2 (no surgery). Group 2 was further categorized into subgroups based on reasons for not proceeding to surgery: group 2a (disease progression), group 2b (poor general conditions), and group 2c (patient refusal). Overall survival (OS) was the primary outcome. Results: Group 1 comprised 145 patients, while subgroups 2a, 2b, and 2c comprised 24, 16, and 31 patients, respectively. The 3-year OS rate was significantly lower in group 2 compared with group 1 (34% versus 56%, p &lt; 0.001). A subgroup analysis showed varying 3-year OS rates: 13% for group 2a, 25% for group 2b, and 58% for group 2c (p &lt; 0.001). Propensity score matching for group 2c and group 1 revealed no significant difference in 3-year OS rates (p = 0.91). Conclusion: One-third of ESCC patients receiving nCRT did not undergo surgical resection. Overall survival in this group was generally poorer, except for those who refused surgery (group 2c).</p

    miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>miR-15a and miR-16-1(miR-15a/16-1) have been implicated as tumor suppressors in chronic lymphocytic leukemia, multiple myeloma, and acute myeloid leukemic cells. However the mechanism of inhibiting the proliferation of leukemic cells is poorly understood.</p> <p>Methods</p> <p>K562 and HL-60 cells were transfected with pRS-15/16 or pRS-E, cell growth were measured by CCK-8 assay and direct cell count. Meanwhile WT1 protein and mRNA level were measured by Western blotting and quantitative real-time PCR.</p> <p>Results</p> <p>In this study we found that over-expression of miR-15a/16-1 significantly inhibited K562 and HL-60 cells proliferation. Enforced expression of miR-15a/16-1 in K562 and HL-60 cells significantly reduced the protein level of WT1 but not affected the mRNA level. However enforced expression of miR-15a/16-1 can not reduce the activity of a luciferase reporter carrying the 3'-untranslated region(3'UTR) of WT1. Silencing of WT1 by specific siRNA suppressed leukemic cells proliferation resembling that of miR-15a/16-1 over-expression. Anti-miR-15a/16-1 oligonucleotides (AMO) reversed the expression of WT1 in K562 and HL-60 cells. Finally, we found a significant inverse correlation between miR-15a or miR-16-1 expression and WT1 protein levels in primary acute myeloid leukemia (AML) blasts and normal controls.</p> <p>Conclusions</p> <p>These data suggest that miR-15a/16-1 may function as a tumor suppressor to regulate leukemic cell proliferation potentially by down-regulating the WT1 oncogene. However WT1 is not directly targeted by miR-15a/16-1 through miRNA-mRNA base pairing, therefore more study are required to understand the mechanism by which miR-15a/16-1 downregulate WT1.</p

    Identifying and Analyzing Task-Encoding Tokens in Large Language Models

    Full text link
    In-context learning (ICL) has become an effective solution for few-shot learning in natural language processing. However, our understanding of ICL's working mechanisms is limited, specifically regarding how models learn to perform tasks from ICL demonstrations. For example, unexpectedly large changes in performance can arise from small changes in the prompt, leaving prompt design a largely empirical endeavour. In this paper, we investigate this problem by identifying and analyzing task-encoding tokens on whose representations the task performance depends. Using experiments that ablate the representations of different token types, we find that template and stopword tokens are the most prone to be task-encoding. In addition, we demonstrate experimentally that lexical meaning, repetition, and text formatting are the main distinguishing characteristics of these tokens. Our work sheds light on how large language models (LLMs) learn to perform a task from demonstrations, deepens our understanding of the varied roles different types of tokens play in LLMs, and provides insights for avoiding instability from improperly utilizing task-encoding tokens.Comment: Work in progres
    corecore