28,723 research outputs found

    Hybrid Tractable Classes of Binary Quantified Constraint Satisfaction Problems

    Full text link
    In this paper, we investigate the hybrid tractability of binary Quantified Constraint Satisfaction Problems (QCSPs). First, a basic tractable class of binary QCSPs is identified by using the broken-triangle property. In this class, the variable ordering for the broken-triangle property must be same as that in the prefix of the QCSP. Second, we break this restriction to allow that existentially quantified variables can be shifted within or out of their blocks, and thus identify some novel tractable classes by introducing the broken-angle property. Finally, we identify a more generalized tractable class, i.e., the min-of-max extendable class for QCSPs

    Dilatancy relation for overconsolidated clay

    Get PDF
    A distinct feature of overconsolidated (OC) clays is that their dilatancy behavior is dependent on the degree of overconsolidation. Typically, a heavily OC clay shows volume expansion, whereas a lightly OC clay exhibits volume contraction when subjected to shear. Proper characterization of the stress-dilatancy behavior proves to be important for constitutive modeling of OC clays. This paper presents a dilatancy relation in conjunction with a bounding surface or subloading surface model to simulate the behavior of OC clays. At the same stress ratio, the proposed relation can reasonably capture the relatively more dilative response for clay with a higher overconsolidation ratio (OCR). It may recover to the dilatancy relation of a modified Cam-clay (MCC) model when the soil becomes normally consolidated (NC). A demonstrative example is shown by integrating the dilatancy relation into a bounding surface model. With only three extra parameters in addition to those in the MCC model, the new model and the proposed dilatancy relation provide good predictions on the behavior of OC clay compared with experimental data

    Estimation in threshold autoregressive models with a stationary and a unit root regime

    Get PDF
    This paper treats estimation in a class of new nonlinear threshold autoregressive models with both a stationary and a unit root regime. Existing literature on nonstationary threshold models have basically focused on models where the nonstationarity can be removed by differencing and/or where the threshold variable is stationary. This is not the case for the process we consider, and nonstandard estimation problems are the result. This paper proposes a parameter estimation method for such nonlinear threshold autoregressive models using the theory of null recurrent Markov chains. Under certain assumptions, we show that the ordinary least squares (OLS) estimators of the parameters involved are asymptotically consistent. Furthermore, it can be shown that the OLS estimator of the coefficient parameter involved in the stationary regime can still be asymptotically normal while the OLS estimator of the coefficient parameter involved in the nonstationary regime has a nonstandard asymptotic distribution. In the limit, the rate of convergence in the stationary regime is asymptotically proportional to n-1/4, whereas it is n-1 in the nonstationary regime. The proposed theory and estimation method are illustrated by both simulated data and a real data example.Autoregressive process; null-recurrent process; semiparametric model; threshold time series; unit root structure.
    corecore