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Abstract

This paper treats estimation in a class of new nonlinear threshold autoregres-

sive models with both a stationary and a unit root regime. Existing literature on

nonstationary threshold models have basically focused on models where the non-

stationarity can be removed by differencing and/or where the threshold variable

is stationary. This is not the case for the process we consider, and nonstandard

estimation problems are the result.

This paper proposes a parameter estimation method for such nonlinear thresh-

old autoregressive models using the theory of null recurrent Markov chains. Un-

der certain assumptions, we show that the ordinary least squares (OLS) estima-

tors of the parameters involved are asymptotically consistent. Furthermore, it

can be shown that the OLS estimator of the coefficient parameter involved in the

stationary regime can still be asymptotically normal while the OLS estimator of

the coefficient parameter involved in the nonstationary regime has a nonstandard

asymptotic distribution. In the limit, the rate of convergence in the stationary

regime is asymptotically proportional to n−
1
4 , whereas it is n−1 in the nonsta-

tionary regime. The proposed theory and estimation method are illustrated by

both simulated data and a real data example.

Key words: Autoregressive process; null–recurrent process; semiparametric model;

threshold time series; unit root structure.

JEL Classification: C14, C18, C22.

1



1 Introduction

Ordinary unit root models have just one regime, whereas ordinary threshold models

have several regimes, but are stationary. In this paper, we study a threshold model

that has unit–root behavior in one regime and acts as a stationary process in another

regime. More specifically, we consider a parametric threshold autoregressive (TAR)

model of the form

yt = α1yt−1I[yt−1 ∈ Cτ ] + α2yt−1I[yt−1 ∈ Dτ ] + et, 1 ≤ t ≤ n, (1.1)

where Cτ is a subset of R1 = (−∞,∞) indexed by τ > 0, Dτ = Cc
τ = R1 − Cτ is the

complement of Cτ , τ is essentially assumed to be known in the asymptotic analysis

in this paper, −∞ < α1, α2 < ∞ are assumed to be unknown parameters, but will

be estimated under the assumption that α2 = 1, the distribution of {et} is absolutely

continuous with respect to Lebesgue measure with pe(·) being the density function

satisfying infx∈C pe(x) > 0 for all compact sets C, {et} is assumed to be a sequence of

independent and identically distributed (i.i.d.) random errors with E[e1] = 0, 0 < σ2 =

E[e21] <∞ and E[e41] <∞, {et} and {ys} are assumed to be mutually independent for

all s < t, and n is the sample size of the time series. Let y0 = 0 throughout this paper.

Even though (1.1) is the simplest possible of the type of models we are discussing, it

requires nonstandard techniques using the theory of null recurrent Markov chains. A

few results of this theory are reviewed in Appendix A.

The vast majority of threshold models used have been stationary models, i.e., mod-

els for which |α1| < 1 and |α2| < 1 in the first order case. Such models were introduced

by Tong and Lim (1980). See also Tong (1983, 1990). Among later contributions,

Chan (1990, 1993) consider both estimation and testing problems for the case where

{yt} of (1.1) is stationary. His work is extended in Li and Ling (2011). Pham, Chan

and Tong (1991) consider a nonlinear unit–root problem and establish strong consis-

tency results for the ordinary least squares (OLS) estimators of α1 and α2 for the case

where (α1, α2) lie on the boundary, Hansen (1996) rigorously establishes an asymptotic

theory for the likelihood ratio test for a threshold, Chan and Tsay (1998) discuss a

related continuous–time TAR model, and Hansen (2000) proposes a new approach to
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estimating stationary TAR models. More recently, Liu, Ling and Shao (2009) extend

the discussion of Pham, Chan and Tong (1991) by establishing an asymptotic distri-

bution of the OLS estimator of α2 for the case where Cτ = (−∞, τ ] and either α2 = 1

and α1 < 1 or α2 > 1 and α1 ≤ 1 hold.

There have been other extensions to the nonstationary case, see in particular Caner

and Hansen (2001), thus having a class of models that allow for both nonlinearity and

nonstationarity, and where these properties can be (Caner and Hansen 2001) separately

tested for. The nonstationarity of these models under the null hypothesis has been of a

rather restricted form, thus typically regarding both yt−yt−1 and the threshold variable

to be stationary. In the first order case, this leads to a somewhat degenerate model

that under the null hypothesis has H0 : α1 = α2 = 1 in

yt − yt−1 = (α1 − 1) yt−1I[zt ∈ Cτ ] + (α2 − 1) yt−1I[zt ∈ Dτ ] + et, (1.2)

where {zt} is a sequence of stationary threshold variables, Cτ = (−∞, τ ] and Dτ =

(τ,∞). The parameters α1 and α2 can then be estimated under H0, which leads to

a pure random walk model for (1.2) but more general difference type models for the

higher order case are treated in Caner and Hansen (2001). The authors also point out

that there are several nonstationary alternatives when H0 does not hold. One of the

alternatives to H0 is as follows:

H1 : |α1| 6= 1 and α2 = 1, (1.3)

which does not imply yt − yt−1 is stationary under H1. For more references, including

econometric interpretations of threshold effects, we refer to Teräsvirta, Tjøstheim and

Granger (2010); see in particular Sections 3.2.2, 8.2.3, 11.5 and 11.8.

We allow for more general forms of nonstationarity in which we do not require

yt−yt−1 to be stationary, nor do we require the threshold variable to be stationary. To

the best of our knowledge, estimation in this situation has not been treated before in

the literature. In the present paper, for simplicity, we only treat the first order case,

but the theory can be extended to higher order and vector models, making it possible

to introduce threshold cointegration models in this context. It is also possible to allow
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nonlinear behavior in the regime Cτ . This is done by replacing the linear function α1y

by a nonparametric function, also implicitly including an intercept in the model.

Although our focus in this paper is to estimate α1 and α2 and then study asymptotic

properties of the proposed estimates in Section 2.1 when τ is assumed to be known,

we propose an estimation procedure for the τ parameter in Section 2.2 when τ is

unknown. Since the case of both |α1| < 1 and |α2| < 1 and the case of α1 = α2 = 1 have

already been discussed in the literature (Chan 1993; Hansen 2000), we are interested in

proposing an estimation method to deal with model (1.1) where Cτ is either a compact

subset of R1 or a set of type (−∞, τ ] or [τ,∞), and where α2 = 1 and α1 may be larger

or smaller than one in absolute value. Model (1.1) may be used to detect and then

estimate structural change from one regime to another. Note that τ can be a vector

of unknown parameters. In the case where Cτ = [τ1, τ2] with −∞ < τ1 < τ2 < ∞,

τ = (τ1, τ2). It is shown in Section 2 that the OLS estimator of α1 is asymptotically

consistent with a rate of convergence which in the limit is proportional to n−
1
4 where

we can even let |α1| > 1 when Cτ is compact. By contrast, the OLS estimator of α2

is asymptotically consistent with the super n–rate of convergence. In a related paper

by Liu, Ling and Shao (2009), the authors have established similar results for α̂2, but

have not established any asymptotic theory for α̂1.

The organization of this paper is as follows. Section 2 establishes asymptotic dis-

tributions of the OLS estimators of α1 and α2 and contains an estimation procedure

for the threshold parameter τ . Section 3 discusses an extension of model (1.1) to a

semiparametric threshold autoregressive (SEMI–TAR) model. Examples of implemen-

tation are given in Section 4. The paper concludes in Section 5. We will use the

theory of β–null recurrent Markov chains in this paper and some general results about

these processes are given in Appendix A. Much more details can be found in Karlsen

and Tjøstheim (2001), hereafter referred to as KT. The theory of the present paper is

different from the theory of KT in several aspects. In contrast to KT, we consider a

parametric nonstationary model. The absence of a kernel function makes it harder to

prove existence of moments. On the other hand, the autoregressive structure makes it

difficult to apply the local–time regression technique of Park and Phillips (2001) and

Wang and Phillips (2009a, 2009b). The threshold structure and the splitting into two
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regimes are what makes it possible to employ some of the theory of KT in the present

situation. The mathematical proofs of our theory are given in Appendix B.

2 Estimation in parametric threshold autoregres-

sive models

We propose an ordinary least squares (OLS) estimation method for the unknown pa-

rameters α1 and α2 in Section 2.1. Some remarks about estimation of the τ parameter

are given in Section 2.2.

2.1 OLS estimation method and asymptotic theory

Consider model (1.1). It is obvious that α1 and α2 can be estimated by the ordinary

least squares estimators

α̂1 = α̂1(τ) =

∑n
t=1 yt yt−1I[yt−1 ∈ Cτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ ]

and (2.1)

α̂2 = α̂2(τ) =

∑n
t=1 yt yt−1I[yt−1 ∈ Dτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Dτ ]

. (2.2)

This implies that

α̂1 − α1 =

∑n
t=1 et yt−1I[yt−1 ∈ Cτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ ]

and (2.3)

α̂2 − 1 =

∑n
t=1 et yt−1I[yt−1 ∈ Dτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Dτ ]

. (2.4)

In order to establish an asymptotic distribution for each of the estimators, we first

need to state some auxiliary results. Observe that model (1.1) can be written as

yt − yt−1 = (α1 − 1)yt−1I[yt−1 ∈ Cτ ] + et ≡ ut + et, (2.5)

where ut = (α1 − 1)yt−1I[yt−1 ∈ Cτ ].

Before further discussion, we need to introduce Lemma 2.1 below. As it is a special

case of Lemma 3.1 below, we need only to prove Lemma 3.1 in Appendix B.
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Lemma 2.1 Let {yt} be generated by model (1.1). Then {yt} is a β–null recurrent

Markov chain with β = 1
2
.

A β–null recurrent Markov chain possesses an invariant measure πs and there is a

variable T (n) keeping track of the number of regenerations at time n. Note that the

definitions of πs(·) and T (n) are given in detail in Appendix A below. In this appendix,

we have given a motivation for null recurrence in an econometric context and a very

brief review of some key facts of the theory. If Cτ is compact, T (n) may be taken to

be proportional to the number of visits to Cτ , as is seen from the remark at the end

of this subsection. Let µi =
∫∞
−∞ y

iI[y ∈ Cτ ]πs(dy) for i = 1, 2. Then Lemma A.1(i)

implies that the following limits hold almost surely,

mu ≡ lim
n→∞

1

T (n)

n∑
t=1

ut = lim
n→∞

(α1 − 1)

T (n)

n∑
t=1

yt−1I[yt−1 ∈ Cτ ] = (α1 − 1)µ1. (2.6)

It follows from Lemma A.2 in Appendix A and then Lemma 2.1 that as n→∞

√
T ([nr])

σu

 1

T ([nr])

[nr]∑
t=1

ut −mu

→D B[Mβ(r)] (2.7)

uniformly in 0 ≤ r ≤ 1, where the symbol “ →D ” means weak convergence in cadlag

space (see, for example, the appendix of KT 2001), σ2
u = µ2 − µ2

1, and Mβ(t) is the

Mittag-Leffler process as defined in KT (2001, p 388). Finally, [x] ≤ x is the largest

integer part of x.

Let ηt = ut+et. Using (2.6) and (2.7), it then follows from the continuous mapping

theorem (Corollary 2 of Billingsley 1968, p. 31) and Lemma A.2 that as n→∞

Qn(r) ≡ 1√
n

[nr]∑
t=1

ηt =
1√
n

[nr]∑
t=1

ut +
1√
n

[nr]∑
t=1

et

=
σu
√
T ([nr])
√
n

√
T ([nr])

σu

 1

T ([nr])

[nr]∑
t=1

ut −mu

+
T ([nr])√

n
mu

+
1√
n

[nr]∑
t=1

et =
σu
√
T ([nr])
√
n

B [Mβ(r)] +
1√
n

[nr]∑
t=1

et +
T ([nr])√

n
mu

+ oP (1) =
σ√
nσ

[nr]∑
t=1

et +
T ([nr])√

n
mu + oP (1)
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→D σB(r) +M 1
2
(r) mu ≡ Q(r) (2.8)

uniformly in 0 < r ≤ 1, where Lemma A.4 in Appendix A has also been used.

This conclusion is summarized in Lemma 2.2.

Lemma 2.2 Let {yt} be generated by model (1.1). Then as n→∞

Qn(r) =
1√
n

[nr]∑
t=1

ut +
1√
n

[nr]∑
t=1

et →D σB(r) +M 1
2
(r) mu ≡ Q(r). (2.9)

Note that when µ1 = 0 and thus mu = 0, the contribution of {ut} to {yt} is

asymptotically negligible. In this case, {yt} behaves like a random walk process.

We state the following lemma; its proof is given in Appendix B.

Lemma 2.3 Let model (1.1) hold. Then as n→∞

1

T (n)

n∑
t=1

y2t−1I[yt−1 ∈ Cτ ] →P

∫ ∞
−∞

y2I[y ∈ Cτ ]πs(dy), (2.10)

1

n2

n∑
t=1

y2t−1I[yt−1 ∈ Dτ ]
d−→

∫ 1

0
Q2(r) dr, (2.11)

1√
T (n)

n∑
t=1

yt−1etI[yt−1 ∈ Cτ ]
d−→ N(0, σ2

1), (2.12)

1

n

n∑
t=1

yt−1etI[yt−1 ∈ Dτ ]
d−→ 1

2

(
Q2(1)− σ2

)
, (2.13)

where the symbol “
d−→ ” denotes convergence in distribution, σ2

1 = σ2
∫∞
−∞ y

2I[y ∈
Cτ ]πs(dy) and Q(r) = σB(r) + (α1 − 1)µ1 M 1

2
(r).

We now state the main results of this section; its proof is given in Appendix B.

Theorem 2.1 Let model (1.1) hold. Then as n→∞

√
T (n) (α̂1 − α1)

d−→ N
(
0, σ4 σ−21

)
, (2.14)

n (α̂2 − 1)
d−→ (Q2(1)− σ2)

2
∫ 1
0 Q

2(r)dr
. (2.15)

Note that Q(r) = σB(r) when µ1 = 0. This implies that the asymptotic theory for

α̂2 is the same as that for the unit–root case when µ1 =
∫∞
−∞ yI[y ∈ Cτ ]πs(dy) = 0,
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i.e., {yt} has some symmetrical structure in the stationary regime. In this symmetrical

case, the asymptotic distribution in (2.15) corresponds to the main result in Theorem

2.1 of Liu, Ling and Shao (2009). In the more general case, it is harder to interpret

the right hand side of (2.15). The Mittag–Leffler variable Mβ(r) represents the distri-

butional limit of a scaled version of T ([nr]). As shown in Lemma 3.2 of KT and then

Theorem 2.1 of Wang and Phillips (2009a), we have T (n)√
n
→P LB(1, 0) as n→∞, where

LB(t, 0) = limε→0
1
2ε

∫ t
0 I[|B(s)| < ε]ds is the local–time process of the Brownian motion

process B(r). As a consequence, one may see that T (n) is asymptotically equivalent to
√
nLB(1, 0), which may be more computationally usable. In practice, it will probably

be better to simulate the right hand side of (2.15) by bootstrapping the residuals of

the model. In fact, a bootstrap procedure was used in Gao et al (2009a, 2009b) to

conduct unit root type test in a nonlinear and nonstationary environment.

Remark 2.1. Theorem 2.1 shows that the rate of convergence of α̂1 to α1 is propor-

tional to
√
T (n) while the rate of convergence of α̂2 to 1 is proportional to n. According

to Lemmas 2.1 and 3.4 and Theorem 3.2 of KT, T (n) behaves asymptotically as the

Mittag–Leffler variable M 1
2
(·) and in the limit can be associated with the determin-

istic convergence rate of n−
1
2 . As mentioned above, our results can be translated to

local–time terminology and are threshold autoregressive counterparts of the results in

Phillips (1987), and Park and Phillips (2001). The results of those papers were for the

nonlinear and nonstationary regression case and it is not clear whether the local time

techniques used there can be extended to an autoregressive situation. Note that T (n)

may be replaced by TC(n)
πs(1C)

(Lemma 3.6 of Karlsen and Tjøstheim 2001), where TC(n)

is the number of visits to a small set C, which may be taken to be a subset of Cτ or

Cτ itself if it is compact.

2.2 Remarks about estimation of the τ parameter

In both theory and practice, estimation of the τ parameter is of interest and importance.

Let êt(τ) = yt − α̂1yt−1I[yt−1 ∈ Cτ ] − α̂2yt−1I[yt−1 ∈ Dτ ] and then define the

estimated variance by

σ̂2(τ) =
1

n

n∑
t=1

ê2t (τ). (2.16)
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The τ parameter can then be estimated by

τ̂ = arg min
over all τ

σ̂2(τ). (2.17)

In both the stationary and nonstationary unit–root cases, asymptotic properties of τ̂

have been discussed (see, for example, Pham, Chan and Tong 1991; Chan 1993; Hansen

2000). In the paper by Chan (1993), the author shows that the rate of convergence of τ̂

to τ can be as fast as the super–rate of n, see also Li and Ling (2011). Our simulation

study in Section 4, however, suggests that the rate of convergence of τ̂ to τ may be

related to T (n), as will also be pointed out in the discussion below.

Studying asymptotic properties for τ̂ in detail for the model we are considering

requires a separate investigation, since even in the stationary case the theory is quite

complex (see, for example, Chan 1993). In the present paper, we will only indicate

how Chan’s proof of consistency can be extended and comment on the rate that can

be expected.

Chan (1993) restricts himself to the case of a single threshold τ , so that there is a

stationary regime to the left of τ and another stationary regime to the right of τ . In

our discussion we will use the same simplification but with one of the regimes being

a unit root regime. Moreover, since we only look at the first order case, we take the

threshold variable yt−d to be yt−1.

Chan (1993) makes use of ergodicity in his proof, which we do not have in our case,

but his proof of consistency can nevertheless be adapted to our situation by noting

that

L(θ) =
n∑
t=1

(yt − Eθ(yt|Ft−1))2

can be decomposed using the existence of the regeneration mechanism for a null recur-

rent process, such that (see (A.3) and (A.4) of Appendix A)

L(θ) = U0 +
T (n)∑
k=1

Uk + U(n). (2.18)

Here, θ is the parameter composed of the AR coefficients and the threshold, with θ

belonging to a parameter space Θ. Moreover, Eθ (·|Ft−1) is the conditional expectation
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with respect to the σ–field Ft−1 generated by {ys, 1 ≤ s ≤ t− 1}, and

Uk = Uk(g, θ) =
τk∑

t=τk−1+1

g(yt, yt+1, θ)

with g(yt−1, yt, θ) = (yt − Eθ(yt|Ft−1))2, and where the τk’s are regeneration times.

Finally, U0 and U(n) in (2.18) are a starting term and a residual that can be neglected

as n → ∞. The sequence {Uk} consists of random variables that are identically

distributed and are 1–dependent. It essentially takes the place of the ergodic process

{yt} in Chan’s proof and of course {Uk} trivially fulfills the stationarity and ergodicity

requirement of his Theorem 1, where strong consistency is proved.

The decomposition of (3.2) of Chan (1993) can now be written as

τk∑
t=τk−1+1

(yt − Eθ(yt|Ft−1))2 = R1k(θ) +R2k(θ) +R3k(θ) +R4k(θ),

with

R1k(θ) =
τk∑

t=τk−1+1

(yt − β1yt−1)2 I(yt−1 ≤ z, yt−1 ≤ τ),

R2k(θ) =
τk∑

t=τk−1+1

(yt − β1yt−1)2 I(yt−1 ≤ z, yt−1 > τ),

R3k(θ) =
τk∑

t=τk−1+1

(yt − β2yt−1)2 I(yt−1 > z, yt−1 ≤ τ),

R4k(θ) =
τk∑

t=τk−1+1

(yt − β2yt−1)2 I(yt−1 > z, yt−1 > τ),

where β1, β2 and z are neighboring points of the true values α1, α2 and τ in the

parameter space Θ. Next, Rik(θ), i = 1, · · · , 4 can themselves be decomposed anal-

ogously to (3.3) in Chan (1993) by adding and substracting the true AR parame-

ters α1 and α2. With these changes, the proof of Lemma 1 in Chan (1993) can

be carried through. Moreover, in the proof of his claim 1, σ2
θ can be replaced by

E
[∑τk

t=τk−1+1 (yt − Eθ0(yt|Ft−1))
2
]

with θ0 = (α1, α2), and one has to introduce a trun-

cation variable to ensure the existence of E [Rik(θ)]. The rest of the proof of consistency

can be carried out along the lines of Chan (1993).
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Chan (1993) obtains a rate for τ̂ − τ of order n−1. By the decomposition in (2.18)

we effectively introduce a 1–dependent process where T (n) can be taken as the number

of observations. We could therefore possibly expect a rate for τ̂ − τ of order T−1(n)

which can be associated with n−
1
2 . This is in agreement with the finite sample results

for Case A of Example 4.3 below, which is an example where a threshold of this type

was investigated by simulation. The finite sample rate for the other examples, where

two thresholds are involved, is slower. It should be kept in mind, though, that the

association of T (n) with
√
n is itself an asymptotic result (see, for example, Lemma

3.4 and Theorem 3.2 of KT. For a finite n, T (n) will certainly depend on the set

Cτ . Rigorous conditions and results about the rate and indeed about the asymptotic

distribution would require an extension of Propositions 1 and 2 as well as Theorem 2

of Chan (1993). This is far from trivial and would require a separate paper.

3 Estimation in semiparametric threshold autore-

gressive models

This section considers a semiparametric threshold autoregressive (SEMI–TAR) model

of the form

yt = g(yt−1)I[yt−1 ∈ Cτ ] + αyt−1I[yt−1 ∈ Dτ ] + et

=


g(yt−1) + et if yt−1 ∈ Cτ ,

α yt−1 + et if yt−1 ∈ Dτ ,
(3.1)

where Cτ and Dτ are as defined in (1.1), g(x) is an unknown and bounded function

when x ∈ Cτ , α = 1, and {et} is the same as assumed in (1.1). Let y0 = 0. Model

(3.1) may be used to detect and then estimate structural change from a nonlinear

‘stationary’ regime to a linear ‘nonstationary’ regime.

While the special case of α = 1 of model (3.1) has been mentioned in Example

3.1 of KT as an example of a null recurrent process, asymptotic estimation theory for

model (3.1) has not been studied in the literature. Existing results for the stationary

nonlinear time series models (Tong 1990; Fan and Yao 2003; Gao 2007; Teräsvirta,
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Tjøstheim and Granger 2010) are also not directly applicable to study such SEMI–

TAR models. Our interest is to study asymptotic behavior of both a nonparametric

estimator of g(·) and an OLS estimator of α.

In order to establish consistent estimates for g(·) and α, we need to introduce the

following assumption.

Assumption 3.1 (i) The invariant measure πs of {yt} has a locally continuous

density ps(y) that is locally strictly positive; that is, ps(y) > 0 for all y ∈ R1.

(ii) Let g(y) be twice differentiable and the second derivative g′′(y) be continuous

at all y ∈ R1.

(iii) Let K(·) be a symmetric probability kernel function with compact support

C(K). The bandwidth parameter h satisfies limn→∞ h = 0, limn→∞ nh = ∞ and

lim supn→∞ n
1+δ0h6 <∞ for some 0 < δ0 <

1
2
.

(iv) In case Cτ is not compact, i.e. Cτ = (−∞, τ ] or Cτ = [τ,∞), |g(y)| ≤ cg|y|
with 0 < cg < 1 as |y| → ∞.

Conditions in Assumption 3.1(i)(ii)(iii) are quite mild conditions (see, for example,

Assumptions B0 − B3 of KT. Condition 3.1(iv) is to secure stationary type behavior

on Cτ .

We need the following lemma; its proof is given in Appendix A below.

Lemma 3.1 Let {yt} be generated by model (3.1). If Assumption 3.1(i)(ii)(iv)

holds, then {yt} is a β–null recurrent Markov chain with β = 1
2
.

Similarly to (2.5), we have

yt − yt−1 = (g(yt−1)− yt−1) I[yt−1 ∈ Cτ ] + et ≡ vt + et. (3.2)

Let µg =
∫∞
−∞ g(y)I[y ∈ Cτ ]πs(dy). Then Lemma A.1(i) below implies that the

following limits hold almost surely,

gv ≡ lim
n→∞

1

T (n)

n∑
t=1

vt = lim
n→∞

1

T (n)

n∑
t=1

(g(yt−1)− yt−1) I[yt−1 ∈ Cτ ] = µg − µ1, (3.3)

where µ1 is as defined in (2.6).

We state the following lemma; its proof is similar to equations (2.7)–(2.9).
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Lemma 3.2 Let {yt} be generated by model (3.1). If Assumption 3.1(i)(ii)(iv)

holds, then as n→∞

Pn(r) ≡ 1√
n

[nr]∑
t=1

et +
1√
n

[nr]∑
t=1

vt →D σB(r) +M 1
2
(r) gv ≡ P (r). (3.4)

Let K(·) be a probability kernel function and h be a bandwidth parameter satisfying

Assumption 3.1(iii) above. It is obvious that g(y) and α can be estimated by

ĝ(y) = ĝ(y, τ) =

∑n
t=1K

(
y−yt−1

h

)
ytI[yt−1 ∈ Cτ ]∑n

t=1K
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ]

and

α̂ = α̂(τ) =

∑n
t=1 yt yt−1I[yt−1 ∈ Dτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Dτ ]

, (3.5)

which imply that

ĝ(y)− g(y) =

∑n
t=1K

(
y−yt−1

h

)
(g(yt−1)− g(y)) I[yt−1 ∈ Cτ ]∑n

t=1K
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ]

+

∑n
t=1K

(
y−yt−1

h

)
et I[yt−1 ∈ Cτ ]∑n

t=1K
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ]

,

α̂− 1 =

∑n
t=1 et yt−1I[yt−1 ∈ Dτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Dτ ]

. (3.6)

We now state the main results of this section; its proof is given in Appendix B.

Theorem 3.1 Let both model (3.1) and Assumption 3.1 hold. Then as n→∞

√√√√ n∑
t=1

K
(
y − yt−1

h

)
I[y ∈ Cτ ] (ĝ(y)− g(y))

d−→ N(0, σ2
2), (3.7)

n (α̂− 1)
d−→ (P 2(1)− σ2)

2
∫ 1
0 P

2(r)dr
, (3.8)

where σ2
2 = σ2

∫
K2(u)du and P (r) = σB(r) + M 1

2
(r) gv. Note that P (r) = σB(r)

when gv = 0.

Remark 3.1. Compared with Theorem 2.1, Theorem 3.1 shows that while the

parameter estimator α̂ has the same asymptotic distribution as that of α̂2, the non-

parametric estimator ĝ(·) as expected has a rate of convergence slower than its para-
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metric counterpart α̂1. In addition, Theorem 3.1 shows that the rate of convergence of

ĝ(·) is also slower than that of the corresponding nonparametric kernel estimator for

the stationary case, as shown in KT, Karlsen, MyKlebust and Tjøstheim (2007), and

Wang and Phillips (2009a; 2009b). For the interpretations and possible computation

of the right hand side of (3.6), the same comments as for (2.15) apply.

Other closely related papers in the field of nonparametric and semiparametric re-

gression estimation and specification testing involving nonstationary time series include

Chen, Gao and Li (2008), Cai, Li and Park (2009), and Gao et al (2009a, 2009b).

4 Examples of implementation

This section gives several examples to evaluate the finite–sample performance of the

proposed estimation method in several different cases. There are four simulation ex-

amples and one real date example.

Consider a general threshold autoregressive (TAR) model of the form

yt = α1yt−1I[yt−1 ∈ Cτ ] + α2yt−1I[yt−1 ∈ Cc
τ ] + et, 1 ≤ t ≤ n, (4.1)

where τ = (τ1, τ2), Cτ = [τ1, τ2] for −∞ < τ1 < τ2 <∞ with both τ1 and τ2 being the

threshold parameters, Cc
τ = (−∞, τ1)∪(τ2,∞), and {et} is assumed to be a sequence of

independent and normally distributed random errors with E[e1] = 0 and σ2 = E[e21] =

1. That is, et ∼ N(0, 1). Let y0 = 0.

The unknown parameters α1, α2 and τ are estimated by the ordinary least squares

estimators:

α̃1 = α̂1(τ̂) =

∑n
t=1 ytyt−1I[yt−1 ∈ Cτ̂ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ̂ ]

, (4.2)

α̃2 = α̂2(τ̂) =

∑n
t=1 yt yt−1I[yt−1 ∈ Cc

τ̂
]∑n

t=1 y
2
t−1I[yt−1 ∈ Cc

τ̂
]
, (4.3)

τ̂ = arg min
over all τ

σ̂2(τ), (4.4)

where σ̂2(τ) = 1
n

∑n
t=1 (yt − α̂1(τ)yt−1I[yt−1 ∈ Cτ ]− α̂2(τ)yt−1I[yt−1 ∈ Cc

τ ])
2. Let τ̂ =

(τ̂1, τ̂2) for the asymmetrical case with τ2 6= −τ1.
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Example 4.1 consider a symmetrical case of the form Cτ = [−τ, τ ]. An asymmetrical

bounded case where Cτ = [τ1, τ2] is discussed in Example 4.2 below. Example 4.3

examines the unbounded case where Cτ = (−∞, τ ]. Throughout Examples 4.1–4.3

below, we consider both the cases of A: |α1| < 1 and B: |α1| > 1.

• Consider the case of n = 1000, 2000, 5000 and 10000. Let N = 1000 be the

number of replications and α̃i(j) and τ̂(j) be the respective value of α̃i and τ̂ at

the j–th replication.

• Calculate the standard deviations of the form

std(α̃i) =

√√√√ 1

N − 1

N∑
j=1

(
α̃i(j)− α̃i

)2
and std(τ̂) =

√√√√ 1

N − 1

N∑
j=1

(
τ̂(j)− τ̂

)2
(4.5)

for i = 1, 2 and Cases A and B separately underN = 1000, where α̃i = 1
N

∑N
j=1 α̃i(j)

and τ̂ = 1
N

∑N
j=1 τ̂(j).

• Calculate the biases of the form

Bias(α̃i) =
1

N

N∑
j=1

(α̃i(j)− αi) and Bias(τ̂) =
1

N

N∑
j=1

(τ̂(j)− τ) (4.6)

for i = 1, 2 and Cases A and B separately under N = 1000.

• Calculate the Root Mean Squared Errors of the form

RMSE(α̃i) =

√√√√ 1

N

N∑
j=1

(α̃i(j)− αi)2 and RMSE(τ̂) =

√√√√ 1

N

N∑
j=1

(τ̂(j)− τ)2 (4.7)

for i = 1, 2 and Cases A and B separately under N = 1000.

Example 4.1 Consider a symmetrical (bounded) threshold autoregressive (TAR)

model of the form

yt = α1yt−1I[|yt−1| ≤ τ ] + α2yt−1I[|yt−1| > τ ] + et, 1 ≤ t ≤ n. (4.8)

This example then considers the following cases.

• Case A: α1 = 1
2
, α2 = 1 and τ = 2.5; and
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• Case B: α1 = 3
2
, α2 = 1 and τ = 2.

The simulated results for Example 4.1 are given in Table 4.1 below.

Table 4.1 Simulation Results for Case A and Case B

Case A Case B

n α̃1 α̃2 τ̂ α̃1 α̃2 τ̂

bias

1000 0.0058 −0.0072 −0.0189 0.0943 −0.0015 −0.0205

2000 0.0035 −0.0029 −0.0128 0.0768 −0.0008 −0.0098

5000 0.0018 −0.0008 −0.0061 0.0435 −0.0004 −0.0063

10000 0.0017 −0.0003 −0.0047 0.0387 −0.0002 −0.0034

std

1000 0.1033 0.0142 0.1256 0.4253 0.0026 0.2023

2000 0.0792 0.0058 0.0915 0.3025 0.0014 0.1840

5000 0.0585 0.0015 0.0709 0.2398 0.0006 0.1434

10000 0.0404 0.0006 0.0632 0.2054 0.0003 0.1337

RMSE

1000 0.1035 0.0159 0.1270 0.4357 0.0030 0.2033

2000 0.0793 0.0065 0.0924 0.3121 0.0016 0.1842

5000 0.0585 0.0017 0.0712 0.2437 0.0007 0.1436

10000 0.0405 0.0007 0.0633 0.2090 0.0003 0.1338

Table 4.1 supports the rate results of Theorem 2.1 if standard errors for the various

observation sizes are compared. Also, for this model as well as for the following models,

the number of samples in the stationary regime should be of order
√
n. This was found

to be the case for the experiments conducted by us. Case B has larger standard errors

for α̂1 and smaller standard errors for α̂2, because the explosive behavior on Cτ in this

case leads to more frequent stays in the random walk regime.

Example 4.2 Consider an asymmetrical (bounded) threshold autoregressive (TAR)

model of the form

yt = α1yt−1I[yt−1 ∈ Cτ ] + α2yt−1I[yt−1 ∈ Cc
τ ] + et, 1 ≤ t ≤ n. (4.9)

We are then interested in the following cases:
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• Case A: α1 = 1
2
, α2 = 1, τ1 = −3 and τ2 = 2.5; and

• Case B: α1 = 3
2
, α2 = 1, τ1 = −1.5 and τ2 = 1.

The simulated results for Example 4.2 are given in Table 4.2 below. Similarly to

Table 4.1, Table 4.2 also demonstrates that the proposed estimation method still works

well numerically even when two truncation parameters are involved in the model.

Example 4.3 Consider a threshold autoregressive (TAR) model with unbounded Cτ

of the form

yt = α1yt−1I[yt−1 ≤ τ ] + α2yt−1I[yt−1 > τ ] + et, 1 ≤ t ≤ n. (4.10)

This example also considers the following cases:

• Case A: α1 = 1
2
, α2 = 1, τ = 3; and

• Case B: α1 = 3
2
, α2 = 1, τ = 3.

The simulated results for Example 4.3 are given in Table 4.3 below.

Table 4.3 again supports the rate results of Theorem 2.1. Note that Case B is not

covered by Assumption 3.1(iv), but it works well because the process “explodes” from

(−∞, τ ] into the random walk part [τ,∞).
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Table 4.2 Simulation Results for Cases A and B

Case A

n α̃1 α̃2 τ̂1 τ̂2

bias

1000 0.0019 −0.0110 −0.1158 −0.0214

2000 0.0070 −0.0045 −0.0753 −0.0202

5000 −0.0001 −0.0012 −0.0389 −0.0089

10000 −0.0011 −0.0004 −0.0333 −0.0075

std

1000 0.1308 0.0200 0.2536 0.1481

2000 0.0890 0.0086 0.2089 0.1208

5000 0.0704 0.0023 0.1581 0.0950

10000 0.0367 0.0009 0.1345 0.0663

RMSE

1000 0.1308 0.0228 0.2788 0.1496

2000 0.0893 0.0097 0.2220 0.1225

5000 0.0704 0.0026 0.1628 0.0954

10000 0.0367 0.0010 0.1386 0.0667

Case B

bias

1000 0.2047 −0.0017 −0.0433 −0.1126

2000 0.0924 −0.0009 −0.0329 −0.0764

5000 0.0990 −0.0004 −0.0129 −0.0623

10000 0.0896 −0.0002 −0.0035 −0.0556

std

1000 0.8657 0.0030 0.2695 0.3115

2000 0.7072 0.0015 0.2536 0.3013

5000 0.5993 0.0006 0.2180 0.2712

10000 0.3156 0.0003 0.1886 0.2535

RMSE

1000 0.8896 0.0034 0.2730 0.3313

2000 0.7132 0.0018 0.2558 0.3108

5000 0.6074 0.0007 0.2184 0.2783

10000 0.3280 0.0003 0.1886 0.2596
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Table 4.3 Simulation Results for Case A and Case B

Case A Case B

n α̃1 α̃2 τ̂ α̃1 α̃2 τ̂

bias

1000 −0.0013 −0.0740 −0.0601 0.0479 −0.0014 −0.0227

2000 −0.0009 −0.0307 −0.0180 0.0357 −0.0007 −0.0243

5000 0.0009 −0.0082 −0.0067 0.0332 −0.0002 −0.0141

10000 0.0001 −0.0030 −0.0020 0.0290 −0.0001 −0.0158

std

1000 0.0392 0.1199 0.1633 0.1732 0.0031 0.1713

2000 0.0365 0.0536 0.1065 0.1550 0.0013 0.1594

5000 0.0262 0.0161 0.0715 0.1327 0.0004 0.1409

10000 0.0134 0.0061 0.0442 0.1105 0.0002 0.1181

RMSE

1000 0.0392 0.1409 0.1740 0.1797 0.0034 0.1728

2000 0.0365 0.0618 0.1080 0.1591 0.0014 0.1612

5000 0.0263 0.0181 0.0718 0.1368 0.0005 0.1416

10000 0.0134 0.0068 0.0443 0.1143 0.0002 0.1192

In the following example, we consider a semiparametric threshold autoregressive

model and then study the finite sample performance of the proposed semiparametric

estimation method.

Example 4.4 Consider a semiparametric threshold autoregressive (SEMI–TAR) model

of the form

yt = g(yt−1)I[|yt−1| ≤ τ ] + αyt−1I[|yt−1| > τ ] + et, (4.11)

where τ = 2.5 and et ∼ N(0, 1). Let y0 = 0.

Let K(x) = 1
2
I[−1,1](x). We then estimate g(y) and α by

ĝ(y, τ̂) =

∑n
t=1K

(
y−yt−1

ĥcv

)
ytI[|yt−1| ≤ τ̂ ]

∑n
t=1K

(
y−yt−1

ĥcv

)
I[|yt−1| ≤ τ̂ ]

, (4.12)

α̃ = α̂(τ̂) =

∑n
t=1 yt yt−1I[|yt−1| > τ̂ ]∑n
t=1 y

2
t−1I[|yt−1| > τ̂ ]

, (4.13)

τ̂ = arg min
over all τ

σ̂2(τ), (4.14)
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where σ̂2(τ) = 1
n

∑n
t=1 (yt − ĝ(yt−1, τ)I[|yt−1| ≤ τ ]− α̂(τ)yt−1I[|yt−1| > τ ])2, and ĥcv is

chosen such that

ĥcv = arg min
h∈Hn

1

n

n∑
t=1

(yt I[|yt−1| ≤ τ̂ ]− ĝ−t(yt−1;h) I[|yt−1| ≤ τ̂ ])2 , (4.15)

with ĝ−t(yt−1;h) =

∑n

s=1,6=tK

(
yt−1−ys−1

h

)
ys I[|ys−1|≤τ̂ ]∑n

s=1,6=tK

(
yt−1−ys−1

h

)
I[|ys−1|≤τ̂ ]

and Hn =
[
n−1, n−(1−δ0)

]
, in which

0 < δ0 < 1 is chosen such that ĥcv is achievable and unique in each individual case.

We are interested in the following cases:

• Case A: g(y) = 1
1+y2

, α = 1 and τ = 2.5; and

• Case B: g(y) = y2, α = 1 and τ = 2.5.

Consider the cases of n = 250, 600 and 1000. Let ĝj(y) be the estimated function

of ĝ(y) at the j–th replication and yt(j) be the generated value of yt at the j–th

replication.

• Calculate the standard deviation and the bias of the form

std(α̃) =

√√√√√ 1

N − 1

N∑
j=1

(
α̃(j)− α̃

)2
and Bias(α̃) =

1

N

N∑
j=1

(α̃(j)− α)

for Cases A and B separately under N = 1000, where α̃ = 1
N

∑N
j=1 α̃(j).

• Calculate the Root Mean Squred Error of the form

RMSE(α̃) =

√√√√√ 1

N − 1

N∑
j=1

(α̃(j)− α)2

for Cases A and B separately under N = 1000.

• For the case of n = 250, 600 and 1000, N = 1000 and Cases A and B, calculate

the average of the standard deviations of the form

std(ĝ) =

√√√√√ 1

N

1

n− 1

N∑
j=1

n∑
t=2

(
ĝj(yt−1(j))− ¯̂g(j)

)2
I[|yt−1(j)| ≤ τ̂ ],
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where ¯̂g(j) = 1
n−1

∑n
t=2 ĝj(yt−1(j)).

• For the case of n = 250, 600 and 1000, N = 1000 and Cases A and B, calculate

the average of the bias of the form

Bias(ĝ) =
1

N

1

n− 1

N∑
j=1

n∑
t=2

(
ĝj(yt−1(j))− ¯̂g(j)

)
I[|yt−1(j)| ≤ τ̂ ],

where ¯̂g(j) = 1
n−1

∑n
t=2 ĝj(yt−1(j)).

• For the case of n = 250, 600 and 1000, N = 1000 and Cases A and B, calculate

the average of the Root Mean Squared Error of the form

RMSE(ĝ) =

√√√√√ 1

N

1

n− 1

N∑
j=1

n∑
t=2

(ĝj(yt−1(j))− g(yt−1(j)))
2 I[|yt−1(j)| ≤ τ̂ ] .

Table 4.4 Simulation Results for Case A and Case B

Case A Case B

n α̃ τ̂ ĝ α̃ τ̂ ĝ

bias

250 −0.0381 0.3672 0.0438 −0.0028 −0.4244 −0.0128

600 −0.0103 0.3332 0.0446 −0.0015 −0.4321 −0.0083

1000 −0.0062 0.3271 0.0439 −0.0010 −0.4445 −0.0055

std

250 0.0902 0.2198 0.4566 0.0058 0.2293 0.5865

600 0.0185 0.1938 0.4516 0.0030 0.2291 0.4719

1000 0.0116 0.1677 0.4514 0.0020 0.1997 0.4195

RMSE

250 0.0979 0.4236 0.3838 0.0079 0.5908 0.3706

600 0.0211 0.4044 0.3540 0.0034 0.4893 0.2754

1000 0.0131 0.3969 0.3294 0.0022 0.4875 0.2312

Table 4.4 also shows that the rate of α̃ to α is much faster than that of ĝ to g

as shown in Theorem 3.1. Unlike Examples 4.1–4.3, the simulation study in Exam-

ple 4.4 is more computationally intensive. This is because of the involvement of the

nonparametric kernel estimation procedure and the cross–validation (CV) bandwidth
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selection method. Due to this, Table 4.4 provides only the simulation study results for

the sample sizes of up to n = 1000. Meanwhile, we have only used the CV selection

method in practice. Theoretical discussion about such an issue requires further study

and is therefore left for future research.

Example 4.5 Finally, as a real data illustration, we now look at the logarithm of the

British pound/American dollar real exchange rate, yt, defined as log(et) + log(pUKt )−
log(pUSAt ), where {et} is the monthly average of the nominal exchange rate, and {pit}
denotes the consumption price index of country i.

These CPI data come from website: http://www.rateinflation.com/ and the ex-

change rate data are available at http://www.federalreserve.gov/, spanning from Jan-

uary 1988 to February 2011, with sample size n = 278.

1988 1993 1998 2003 2008
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 1: yt = log(et) + log(pUKt )− log(pUSAt ).

Our estimation method suggests the threshold models of the form yt as

yt = −0.1249yt−1I[|yt−1| ≤ 0.0134] + 0.9974yt−1I[|yt−1| > 0.0134] + et (4.16)

and σ̂2 = 5.7808 × 10−4. According to theory, we would expect that the number of

observations in the stationary regime is proportional to
√
n, and in fact

∑278
i=1 I[|yt−1| ≤

0.0134] = 18, which is small but the threshold effect is quite clear in the present

example.

Actually, model (4.16) shows that while α̃2 = 0.9974 is quite close to one, α̃1 =
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−0.1249 is significantly different from one.

Model (4.16) implies

yt − yt−1 = −1.1249 yt−1I[|yt−1| ≤ 0.0134]− 0.0026 yt−1I[|yt−1| > 0.0134] + et. (4.17)

Thus, both models (4.16) and (4.17) indicate that {yt} may be nonstationary but

does not necessary follow a random walk process. A similar discussion by Bec, Rahbek

and Shephard (2008) also shows that the exchange rate between French franc and

Deutsche mark over the time period between December 1972 and April 1988 does not

necessarily follow a unit–root model. It is not easy to make a direct comparison since

they use a shorter and different data set, and since they consider a Markov switching

between regimes ultimately yielding a stationary model. This provides support from

an empirical application point of view that there is some need to study a nonstationary

threshold model of the form (1.1).

5 Conclusions and discussion

This paper has considered two classes of threshold autoregressive models with possible

nonstationarity. The first one is a class of parametric threshold autoregressive (TAR)

models with possible nonstationarity. The slope parameters have been consistently

estimated. The second class is a new class of semiparametric threshold autoregressive

(SEMI–TAR) models. We have estimated both the unknown slope parameter and

unknown function using a semiparametrically consistent method.

One issue that has not been addressed is how to establish an asymptotic theory

for τ̂ , a consistent estimate of τ , in this kind of nonlinear and nonstationary situation.

While it is anticipated that an asymptotically normal estimator of τ may be established

(similar to Theorem 2 of Chan 1993), detailed assumptions and rigorous proofs may

involve both new tools and more technicalities and therefore are left for future research.

Another issue is possible extensions of the current discussion for the first–order

univariate case to higher–order and vector models. If the latter is achieved, one could

introduce a class of threshold cointegration models with nonstationarity. Further dis-

cussion is also left for future research. Finally, there is the challenge of trying to extend
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the theory to smooth transition autoregressive (STAR) models. These models are ex-

tensively used in econometrics (see, for example, Terävirta, Tjøstheim and Granger

2010). Such an extension would be highly non–trivial and thus left for future research.
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7 Appendix A

In order to make this paper self–contained, we introduce some general results about β–null

recurrent Markov chains in this appendix. At the request of a referee, we start by giving

some econometric motivation for this class of processes.

One way to look at the β-null recurrent processes is that they can be thought of as a

generalized I(1) class containing both linear and nonlinear models. (There are other gen-

eralizations as can be seen from Teräsvirta et al (2010, Section 11.4) or Tjøstheim (2011)).

The starting point is the simple random walk. The two basic properties that Karlsen and

Tjøstheim (2001) (KT) try to extend to a larger class of nonlinear I(1) type processes are (i)

the persistence of the random walk (its nonstationarity); and (ii) the possibility of establishing

central limit results.

The random walk is a linear process and a Markov chain. The Markov chain property

also holds for the nonlinear generalization

yt = g(yt−1) + εt t ≥ 1 (A.1)
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and such a process can be both stationary and nonstationary. If |g(y)| ≤ c |y| for some c < 1

when |y| is large enough, then there exists an initial distribution for y0, so that {yt} becomes

stationary if started with this distribution, and property (i) above is not fulfilled. On the

other hand, if g is such that {yt} is explosive, e.g. g(y) = y2, then property (ii) cannot be

satisfied in general; at least not in a nonparametric estimation context, because {yt} is then

a transient Markov chain. A crucial property for {yt} to have for condition (ii) to hold is

that it should be recurrent. This means that if ys = y for a certain time point s, then the

Markov chain {yt} is guaranteed to be in an arbitrary small neighborhood around y with

probability one at a future time point; the process recurs or regenerates. We refer to KT for

a more precise statement.

Under relatively weak regularity conditions, KT derive a central limit theorem for sums of

the type
∑n
s=1 h(ys) properly scaled, where h is a function satisfying some moment conditions.

The key to this derivation is to use the recurrence property of the Markov chain to decompose

the above sum as

n∑
s=1

h(ys) =
τ1∑
s=1

h(ys) +
τ2∑

s=τ1+1

h(ys) + . . .+
n∑

s=τT+1

h(ys)

corresponding to the recurrence times τ1, τ2, . . . , τT ≤ n; i.e., the time points of the regener-

ations of the chain. Clearly, T = T (n) → ∞ as n → ∞, but at a slower rate. Due to the

Markov property, the components
∑τi+1

s=τi+1 h(ys), i = 1, . . . , T are independent and identi-

cally distributed, and this can be used to prove a central limit result under the additional

assumption that the distribution of the recurrence time intervals Si = τi − τi−1 should not

have too heavy tails. More specifically, Pr{Si > s} is essentially of the order s−β, 0 < β < 1,

so that E
[
Ski

]
<∞ for k < β. This property is named β-null recurrence in KT. The random

walk corresponds to β = 0.5, as was established by Kallianpur and Robbins (1954).

Both parametric and nonparametric estimation can in principle be handled by this tech-

nique. A very different approach based on random walk-like processes and local time of the

Wiener process has been used by Park and Phillips (2001) and Wang and Phillips (2009a,

2009b) but at present seems limited to a regression situation, although in other ways it is

more general than the null recurrent Markov chain approach.

The class of recurrent Markov chains is subdivided into positive and null recurrent chains,

depending on whether the expected recurrence time E [Si] is finite or not. The positive

recurrent case has E [Si] <∞ (β = 1 in the above) and corresponds to stationarity, whereas

the null recurrent case can be associated with a nonlinear extension of I(1). A unit root
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AR(p) process can be cast as a p-dimensional Markov chain, and in Myklebust, Karlsen and

Tjøstheim (2011) it is shown that it is β–null recurrent with β = 0.5 under weak assumptions.

But the null recurrent class is not restricted to linear processes, and it has the useful invariance

property that if {yt} is null recurrent (β–null recurrent) then the transformed process {h(yt)}

is null recurrent (β–null recurrent) for an arbitrary one-to-one transformation h. Such an

invariance property does not hold for the ’ordinary’ I(1) class of processes. The class of β-null

recurrent processes satisfies both (i) and (ii) above, but this set-up is restricted by the fact

that it must be possible to embed {yt} in a Markov chain framework, and only one unit root

is allowed. This is the case for model (1.1) that we are considering in this paper.

Let {yt} be a null recurrent Markov chain. We have n observations of this process and

replace the above sum of h(ys) by the following general form

Sn(g) =
n∑
j=0

g(yj , . . . , yj+r−1) (A.2)

for some function g(·). We let π be an invariant measure for {yt} and

Sn(g) = U0 +

T (n)∑
k=1

Uk + U(n) (A.3)

be the decomposition of Sn(g) as in (3.23) of KT. Moreover, T (n) is the number of regenera-

tions in the time interval [0, n]. We also need a notation for the moments w.r.t. the invariant

measure π. Note from the decomposition (A.3) that

Uk = Uk(g) =
τk∑

τk−1+1

g(yj , . . . , yj+r−1), k = 1, 2, . . . , (A.4)

where the τk-s are regeneration times. The U ′ks are identically distributed and are (r − 1)–

dependent. (If r = 1 they are independent). If they exist, we denote the expectation and

variance of these terms by µ(g) = E(Uk(g)) and σ2(g) = var(Uk(g)). Note that for r = 1,

µ(g) =
∫
g(x)πs(dx) and similarly for σ2(g). For r > 1

µ(g) = πs(g) ≡
∫
πs(dx1)P (x1, dx2) · · ·P (xr−1, dxr)g(x1, . . . , xr), (A.5)

where s refers to the small function used in the minimization condition (see (3.4) of KT 2001)

and P (·, ·) is the transition probability of the chain.

26



Finally, as in equation (4.4) of KT we introduce the notation

σ̄2 = σ̄2(g) =

(r−1)∑
k=−(r−1)

cov(U1+|k|(g), U1(g)). (A.6)

We are now ready to formulate the lemmas:

Assumption A.1. Assume that the minorization condition ((3.4) of KT) is fulfilled and

that {yt} is β–null recurrent as defined in Definition 3.2 and in Theorem 3.1 of KT. We let

u(n) = nβLs(n) where 0 < β < 1 and the slowly varying function Ls(n) is as in the tail

condition (3.16) of KT.

Lemma A.1 Let Assumption A.1 hold. (i) Let ||g|| ∈ L1
r(πs) and also the process have

an arbitrary initial distribution λ. Then as n→∞

Sn(g)

T (n)
→ πs(g) almost surely (a.s.). (A.7)

(ii) Then for n large enough, the inequality n
1
2
−ε0 ≤ T (n) ≤ n

1
2
+ε0 holds with probability

one for some 0 < ε0 <
1
4 .

Proof. The proof of (i) follows from that of Lemma 3.2 of KT (2001) while the proof of

(ii) follows from Lemma 3.4 of KT (2001).

Lemma A.2 Let Assumption A.1 hold. If (i) µ(|g|) < ∞ and (ii) there exists an m > 1

so that E |U(g)− µ(g)|2m ≤ dm for some dm > 0, then

(∆n, Tn)→D2 (B(Mβ),Mβ), with B and Mβ independent. (A.8)

where the symbol “→D2 ” means weak convergence in cadlag space (see, for example, the ap-

pendix of KT 2001), Tn =
{
T ([nt])
u(n) : t ≥ 0

}
, ∆n(t) = u−1/2(n)σ̄−1(g){S[nt](g)− µ(g)T ([nt])},

[nt] is the integer function and Mβ(t) is the Mittag-Leffler process as defined in KT on page

388.

Proof. The proof is essentially the same as the proof of Theorem 4.1 in KT but much

simpler. As in that proof one introduces the scaled variables

Wk(g) = σ̄−1(Uk(g)− µ(g)). (A.9)

(note that the existence of σ̄2 follows from condition ii), the definition of σ̄2 and the Schwartz
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inequality.) From condition ii) it also follows that there exists an m > 1 such that E
[
W 2m
k

]
<

d′m for some constant d′m from which

n−m
[nt]∑
k=1

E(W 2m
k (g) ≤ d′mtn−m−1 = o(1). (A.10)

It follows from standard limit theorems that

Qn(t)
.
= n−1/2

[nt]∑
k=1

Wk(g)→D B(t). (A.11)

Tightness is then proved exactly as in KT (note that there is a misprint in the last

formula on page 393 of KT: W2k−1 should be W2k−i). It follows that the convergence can be

strengthened to convergence in D2. We can neglect the edge terms

δg,n(t) ≡ u−1/2(n)σ̄−1(g){U0(t) + U(n)(t)}. (A.12)

using the technique of part 2 of the proof of KT. The final part of the proof of KT only deals

with the process Tn induced by the number of regenerations T (n), and this is completely

independent of the bandwidth considerations introduced in KT. The lemma follows.

The limit distribution in Lemma A.2 is non-Gaussian. However, as in Theorem 4.2 of KT

(2001), a Gaussian distribution can be obtained by a stochastic normalization. We let TC(n)

denote the number of visits of Xt to a small set C in the time period [0, n]. We have that

TC(n)/T (n) converges with probability 1 to πs(C). We now have the following lemma.

Lemma A.3 Let the conditions of Lemma A.2 hold and let C be a small set. Then

T
1/2
C (n)π1/2s (C)σ̄−1(g){T−1C (n)Sn(g)− π−1s (C)µ(g)} d−→ N(0, 1). (A.13)

In Lemma A.2 the process B(Mβ(t)) enters. Concerning the existence of moments we

have the following lemma.

Lemma A.4 Let k be a positive integer. Then, E
[
B(Mβ(t))2k+1

]
= 0, and

E
[
B(Mβ(t))2k

]
=

(2k − 1)(2k − 3) · · · 1 · tβk

(Γ(1 + β))k
. (A.14)

Proof. We use double expectation and the independence of the processes B and Mβ to
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obtain

E
[
B(Mβ(t))2k

]
= E[E(B(Mβ(t))2k|Mβ(t))] = E[(2k − 1)(2k − 3) · 1Mβ(t)k]

=
(2k − 1)(2k − 3) · · · 1 · tβk

(Γ(1 + β))k
,

so that all moments exist.

8 Appendix B

This appendix provides the detailed proofs of the lemmas and theorems stated in Sections 2

and 3.

Proof of Lemma 2.1: Since the proof follows from that of Lemma 3.1 for the case of

g(y) = α1y, we omit the detail here.

Proof of Lemma 2.3: Recall from Lemma 2.2 that as n→∞

Qn(r) =
1√
n

[nr]∑
t=1

ut +
1√
n

[nr]∑
t=1

et →D σB(r) +M 1
2
(r) mu ≡ Q(r) (B.1)

uniformly in 0 < r ≤ 1.

We then start by proving (2.10) and (2.11). It follows from Lemma A.1(i) that as n→∞

1

T (n)

n∑
t=1

yit−1I[yt−1 ∈ Cτ ]→P

∫ ∞
−∞

yiI[y ∈ Cτ ]πs(dy) for i = 1, 2, (B.2)

which implies the proof of (2.10).

Let bt = yt−1I[yt−1 ∈ Cτ ] and Sn1 =
∑n
t=1 btet. Since {et} and {ys} are assumed to be

independent for all t > s, Lemma 3.1 of Karlsen, Myklebust and Tjøstheim (2007) shows

that {(yt−1, et)} is β = 1
2–null recurrent. Using the fact that TC(n)

πs(C)
1

T (n) = 1 + oP (1), Lemma

A.3 implies that as n→∞

1√
T (n)

n∑
t=1

yt−1et I[yt−1 ∈ Cτ ]
d−→ N

(
0, σ21

)
, (B.3)

in which we have used (B.2) to derive 1
T (n)

∑n
t=1 b

2
t →P

∫∞
−∞ y

2I[y ∈ Cτ ]πs(dy). This com-

pletes the proof of (2.12).

We then prove equations (2.11) and (2.13). Recall that yt =
∑t
s=1 us +

∑t
s=1 es. We now
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start to prove (2.11). Let Xn(r) = 1√
n

∑[nr]
s=1 (us + es). By the same arguments as in the proof

of Theorem 3.1(a) of Phillips (1987), we have as n→∞

1

n2

n∑
t=1

y2t−1I[yt−1 ∈ Dτ ] =
1

n2

n∑
t=1

y2t−1 −
1

n2

n∑
t=1

y2t−1I[yt−1 ∈ Cτ ]

=
1

n2

n∑
t=1

y2t−1 + oP (1) (B.4)

=

∫ 1

0
X2
n(r)dr + oP (1) (B.5)

d−→
∫ 1

0
Q2(u)du,

where (B.4) follows from the fact that 1
T (n)

∑n
t=1 y

2
t−1I [yt−1 ∈ Cτ ]→P µ2 by Lemmas 2.1 and

A.1(i), and Lemma 2.2 has been used in (B.5). The proof of (2.11) is now completed.

Recall ηt = ut + et. We finally prove (2.13). Note that

1

n

n∑
t=1

yt−1etI[yt−1 ∈ Dτ ] =
1

n

n∑
t=1

yt−1et −
1

n

n∑
t=1

yt−1etI[yt−1 ∈ Cτ ]

=
1

n

n∑
t=1

yt−1et + oP (1) (B.6)

=
1

n

n∑
t=1

yt−1ηt −
1

n

n∑
t=1

yt−1ut + oP (1)

=
1

n

n∑
t=1

yt−1ηt −
(α1 − 1)

n

n∑
t=1

y2t−1I[yt−1 ∈ Cτ ] + oP (1)

=
1

n

n∑
t=1

yt−1ηt + oP (1) (B.7)

=
1

n

n∑
t=2

(
t−1∑
s=1

ηs

)
ηt + oP (1)

=
1

2n

n∑
t=1

(
n∑
s=1

ηs

)
ηt −

1

2n

n∑
t=1

η2t + oP (1)

d−→ 1

2

(
Q2(1)− σ2

)
, (B.8)

where Q(r) = σB(r) +M 1
2
(r) mu, equation (2.12) has been used in (B.6), Lemma A.1(i) has

been used in (B.7) and Lemma 2.2 has been used in (B.8).

Therefore, the proof of Lemma 2.3 is completed.
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Proof of Theorem 2.1: Recall that

α̂1 − α1 =

∑n
t=1 et yt−1I[yt−1 ∈ Cτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Cτ ]

and (B.9)

α̂2 − 1 =

∑n
t=1 et yt−1I[yt−1 ∈ Dτ ]∑n
t=1 y

2
t−1I[yt−1 ∈ Dτ ]

. (B.10)

The proof of Theorem 2.1 then follows immediately from Lemma 2.3 and the continuous

mapping theorem.

Proof of Lemma 3.1: We shall use Theorem 3.1 of KT to show that {yt} of (B.11)

below is β–null recurrent with β = 1
2 as in the random walk case. Recall the structure of

model

yt = g(yt−1) I[yt−1 ∈ Cτ ] + αyt−1 I[yt−1 ∈ Dτ ] + et, (B.11)

where Cτ is either a compact subset of R1 or Cτ = (−∞, τ ] or Cτ = [τ,∞) and Dτ is the

complement of Cτ .

Then the process {yt} is null recurrent (see Appendix B2 of Meyn and Tweedie 1994).

Note that the proof in that book is easily modified to the situation of model (3.1) and a

bounded g(·), see the remark at the bottom of page 303). This implies that there exists an

invariant measure π and that the process recurs with probability 1, but with infinite expected

recurrence time. The next step is to establish that the minorization condition (3.4) of KT

holds. We first look at the case where Cτ is compact. Then the construction of Example 3.1

of KT can be used. The minorization condition then follows directly from Example 3.1 of KT

with f(x) of that paper given by f(x) = g(x)I(x ∈ C) + x(1− I(x ∈ C)) with C = Cτ since

it is assumed that the distribution of et is absolutely continuous with respect to Lebesgue

measure. The fact that the minorization condition holds means that the split chain can be

used, and as in KT, {Sα} is used to denote the recurrence times. They are iid and because

of null recurrence P (Sα > n) must be asymptotically larger than Ls(n)/n1+ε, where Ls(n) is

slowly varying and ε > 0.

We are free to choose any small set K0 as a set of regeneration in (B.11). We choose K0

as Cτ if Cτ is compact. This is because compact sets are small if the distribution of {et} is

absolutely continuous with respect to Lebesgue measure. There are two ways in which {yt}

may regenerate:

1. The process {yt} does not leave the set Cτ before it regenerates. Let An be the event

that yt stays in Cτ in at least n + i steps and regenerates at step n + i for i ≥ 1. The time
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S′ to regeneration satisfies

P (S′ > n) = P (An) ≤
∞∑

i=n+1

ρi ≤Mρn+1 = o(n−γ)

for any 0 < γ < 1, where 0 < M < ∞ is an absolute constant. Here ρ = ρ1ρ2 where

ρ1 = supx∈Cτ P (x,Cτ ), where P (·, ·) is the transition probability of the chain. Note that

0 < ρ1 < 1. Similarly, ρ2 = 1 − a, where a is defined in Example 3.1 of KT and 0 < a < 1.

From this, comparing to O(n−γ), it is seen that these recurrence times do not contribute to

the tail bahaviour of Sα.

2. The process {yt} does leave the set Cτ before it regenerates. Outside the set Cτ , {yt}

behaves as a random walk, and therefore according to the paper by Kallianpur and Robbins

(1954) and the fact that what goes on inside the set Cτ can be neglected compared to a

probability of order O(n−1/2), if S′′ is such a recurrence time, P (S′′ > n) = O(n−1/2). This

means that the tail behaviour of Sα is controlled by the tail behaviour of S′′ and that {yt} is

β–null recurrent with β = 1
2 .

Next we look at the case where Cτ = (−∞, τ ] or [τ,∞). Without loss of generality, we

may assume Cτ = (−∞, τ ] In this case we let the set of regeneration be the set K0 = [τ ′, τ ]

where τ ′ can be taken to be any real number smaller than τ . From Assumption 3.1(iv), we

may assume that {yt} behaves as a stationary process to the left of τ ′ and like a random walk

to the right of τ .

Again it follows from Appendix B2 of Meyn and Tweedie (1994) that {yt} is null recurrent.

(In fact Meyn and Tweedie has g(·) linear). By the same reasoning as above, option 2 then

splits into two cases: 2a) where {yt} leaves K0 going to the stationary part of {yt} and then

does not enter the random walk part before it regenerates. The associated recurrence time S′′′

has tail behaviour controlled by P (S′′′ > n) = O(Ls(n)/n1+ε). The possibility 2b) is the case

where the random walk part is visited before it regenerates, but here P (S′′ > n) = O(n−1/2),

as time spent in the stationary part and in the set Cτ can be neglected as far as tail behaviour

is concerned. This implies again that {yt} is β–null recurrent with β = 1
2 .

Remark: The process {yt} may even be explosive on the left–hand side, if it explodes in

the direction of K0 and the random walk regime. This is illustrated by the simulated example

in Example 4.3.

Proof of Theorem 3.1: Because of Lemma 3.1, the proof of (3.8) is the same as that
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of (2.15). Let Wnt(y) =
K

(
y−yt−1

h

)
I[yt−1∈Cτ ]∑n

t=1
K

(
y−yt−1

h

)
I[yt−1∈Cτ ]

. In order to prove (3.7), in view of (3.6), it

suffices to show that as n→∞√√√√ n∑
t=1

K

(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

n∑
t=1

Wnt(y) (g(yt−1)− g(y))→P 0, (B.12)

√√√√ n∑
t=1

K

(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

n∑
t=1

Wnt(y) et
d−→ N(0, σ2). (B.13)

Note that by Taylor expansions, Lemma A.1(i) and Assumption 3.1

1

T (n)h

n∑
t=1

K

(
y − yt−1

h

)
I[yt−1 ∈ Cτ ] = I[y ∈ Cτ ] ps(y)(1 + oP (1)), (B.14)

1

T (n)h

n∑
t=1

K

(
y − yt−1

h

)
I[yt−1 ∈ Cτ ] (g(yt−1)− g(y))

=
g′(y)h

T (n)h

n∑
t=1

K

(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

(yt−1 − y)

h

+
g′′(u)h2

2T (n)h

n∑
t=1

K

(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]

(yt−1 − y)2

h2

= g′(y) h

∫
vK(v)dv I[y ∈ Cτ ] ps(y) + oP (h)

+
h2g′′(y)

2

∫
v2K(v)dv I[y ∈ Cτ ] ps(y) + oP (h2)

= oP (h), (B.15)

where u is between y and yt−1, and ps(y) is the density function of the invariant measure πs

of {yt}. This, along with Lemma A.1(ii) and using Assumption 3.1(iii), implies (B.12).

Let aht(y) = K
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ] and Sn2 =

∑n
t=1 aht(y)et. Since {et} and {ys} are

assumed to be independent for all t > s, Lemma 3.1 of Karlsen, Myklebust and Tjøstheim

(2007) shows that {(yt−1, et)} is β = 1
2–null recurrent. Using the fact that TC(n)

πs(C)
1

T (n) =

1 + oP (1), Lemma A.3 and the proof of Theorem 5.4 of KT imply that as n→∞

√∑n
t=1K

2
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ]√∑n

t=1K
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ]

·
∑n
t=1K

(
y−yt−1

h

)
I[yt−1 ∈ Cτ ] et√∑n

t=1K
2
(
y−yt−1

h

)
I[yt−1 ∈ Cτ ]

d−→ N

(
0, σ2

∫ ∞
−∞

K2(u)du

)
, (B.16)
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in which we have followed (B.14) to derive

1

T (n)h

n∑
t=1

Ki
(
y − yt−1

h

)
I[yt−1 ∈ Cτ ]→P

∫ ∞
−∞

Ki(u)du · I[y ∈ Cτ ]ps(y)

for i = 1, 2. This completes the proof of (B.13). The proof of Theorem 3.1 is therefore

completed.
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