54,948 research outputs found

    Discovery of a new supernova remnant G150.3+4.5

    Full text link
    Large-scale radio continuum surveys have good potential for discovering new Galactic supernova remnants (SNRs). Surveys of the Galactic plane are often limited in the Galactic latitude of |b| ~ 5 degree. SNRs at high latitudes, such as the Cygnus Loop or CTA~1, cannot be detected by surveys in such limited latitudes. Using the available Urumqi 6 cm Galactic plane survey data, together with the maps from the extended ongoing 6 cm medium latitude survey, we wish to discover new SNRs in a large sky area. We searched for shell-like structures and calculated radio spectra using the Urumqi 6 cm, Effelsberg 11 cm, and 21 cm survey data. Radio polarized emission and evidence in other wavelengths are also examined for the characteristics of SNRs. We discover an enclosed oval-shaped object G150.3+4.5 in the 6 cm survey map. It is about 2.5 degree wide and 3 degree high. Parts of the shell structures can be identified well in the 11 cm, 21 cm, and 73.5 cm observations. The Effelsberg 21 cm total intensity image resembles most of the structures of G150.3+4.5 seen at 6 cm, but the loop is not closed in the northwest. High resolution images at 21 cm and 73.5 cm from the Canadian Galactic Plane Survey confirm the extended emission from the eastern and western shells of G150.3+4.5. We calculated the radio continuum spectral indices of the eastern and western shells, which are β∼−2.4\beta \sim -2.4 and β∼−2.7\beta \sim -2.7 between 6 cm and 21 cm, respectively. The shell-like structures and their non-thermal nature strongly suggest that G150.3+4.5 is a shell-type SNR. For other objects in the field of view, G151.4+3.0 and G151.2+2.6, we confirm that the shell-like structure G151.4+3.0 very likely has a SNR origin, while the circular-shaped G151.2+2.6 is an HII region with a flat radio spectrum, associated with optical filamentary structure, Hα\alpha, and infrared emission.Comment: 5 pages, 3 figures, accepted for publication of Astronomy and Astrophysic

    Preparation of cluster states and W states with superconducting- quantum-interference-device qubits in cavity QED

    Get PDF
    We propose schemes to create cluster states and W states by many superconducting-quantum-interference-device (SQUID) qubits in cavities under the influence of the cavity decay. Our schemes do not require auxiliary qubits, and the excited levels are only virtually coupled throughout the scheme, which could much reduce the experimental challenge. We consider the cavity decay in our model and analytically demonstrate its detrimental influence on the prepared entangled states.Comment: 6 pages, 3 figures, to appear in Phys. Rev.

    Universal quantum computation with electronic qubits in decoherence-free subspace

    Full text link
    We investigate how to carry out universal quantum computation deterministically with free electrons in decoherence-free subspace by using polarizing beam splitters, charge detectors, and single-spin rotations. Quantum information in our case is encoded in spin degrees of freedom of the electron-pairs which construct a decoherence-free subspace. We design building blocks for two noncommutable single-logic-qubit gates and a logic controlled phase gate, based on which a universal and scalable quantum information processing robust to dephasing is available in a deterministic way.Comment: 14 pages, 3 figure

    Low frequency oscillations in total ozone measurements

    Get PDF
    Low frequency oscillations with periods of approximately one to two months are found in eight years of global grids of total ozone data from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The low frequency oscillations corroborate earlier analyses based on four years of data. In addition, both annual and seasonal one-point correlation maps based on the 8-year TOMS data are presented. The results clearly show a standing dipole in ozone perturbations, oscillating with 35 to 50 day periods over the equatorial Indian Ocean-west Pacific region. This contrasts with the eastward moving dipole reported in other data sets. The standing ozone dipole appears to be a dynamical feature associated with vertical atmospheric motions. Consistent with prior analyses based on lower stratospheric temperature fields, large-scale standing patterns are also found in the extratropics of both hemispheres, correlated with ozone fluctuations over the equatorial west Pacific. In the Northern Hemisphere, a standing pattern is observed extending from the tropical Indian Ocean to the north Pacific, across North America, and down to the equatorial Atlantic Ocean region. This feature is most pronounced in the NH summer
    • …
    corecore