23 research outputs found

    Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High dietary protein can reduce fat deposition in animal subcutaneous adipose tissue, but little is known about the mechanism.</p> <p>Methods</p> <p>Sixty Wujin pigs of about 15 kg weight were fed either high protein (HP: 18%) or low protein (LP: 14%) diets, and slaughtered at body weights of 30, 60 or 100 kg. Bloods were collected to measure serum parameters. Subcutaneous adipose tissues were sampled for determination of adipocyte size, protein content, lipid metabolism-related gene expression, and enzyme activities.</p> <p>Results</p> <p>HP significantly reduced adipocyte size, fat meat percentage and backfat thickness, but significantly increased daily gain, lean meat percentage and loin eye area at 60 and 100 kg. Serum free fatty acid and triglyceride concentrations in the HP group were significantly higher than in the LP group. Serum glucose and insulin concentrations were not significantly affected by dietary protein at any body weight. HP significantly reduced gene expression of acetyl CoA carboxylase (ACC), fatty acid synthase (FAS) and sterol regulatory element binding protein 1c (SREBP-1c) at 60 kg and 100 kg; however, the mRNA level and enzyme activity of FAS were increased at 30 kg. HP promoted gene and protein expression and enzyme activities of lipoprotein lipase (LPL), carmitine palmtoyltransferase-1B (CPT-1B), peroxisome proliferator-activated receptor <it>γ </it>(PPAR<it>γ</it>) and adipocyte-fatty acid binding proteins (A-FABP) at 60 kg, but reduced their expression at 100 kg.</p> <p>Gene expression and enzyme activity of hormone sensitive lipase (HSL) was reduced markedly at 60 kg but increased at 100 kg by the high dietary protein. Levels of mRNA, enzyme activities and protein expression of ACC, FAS, SREBP-1c and PPAR<it>γ </it>in both LP and HP groups increased with increasing body weight. However, gene and protein expression levels/enzyme activities of LPL, CPT-1B, A-FABP and HSL in both groups were higher at 60 kg than at 30 and 100 kg.</p> <p>Conclusion</p> <p>Fat deposition in Wujin pigs fed high dietary protein for 25 weeks was reduced mainly by depression of lipogenic gene expression. The mechanism of lipid transport, lipolysis and oxidation in adipose tissue regulated by dietary protein appeared to be different at 60 kg and 100 kg body weights.</p

    A porcine gene, PBK, differentially expressed in the longissimus muscle from Meishan and Large White pig

    Get PDF
    An investigation of differences in gene expression in the longissimus muscle of Meishan and Large White pigs was undertaken, using the mRNA display technique. A fragment of one differentially expressed gene was isolated and sequenced, whereupon the complete cDNA sequence was then obtained by using the rapid amplification of cDNA ends (RACE). The nucleotide sequence of the gene is not related to any known porcine gene. Sequence analysis revealed that the open reading frame of this gene encodes a protein with 322 amino acids, thus displaying high sequence identity with the PDZ binding kinase (PBK) of eleven other animal species – dog, horse, cattle, human, chimpanzee, crab-eating macaque, rhesus monkey, rat, mouse, gray short-tailed opossum and platypus, so it can be defined as the porcine PBK gene. This gene was finally assigned GeneID:100141310. Phylogenetic tree analysis revealed that the swine PBK gene has a closer genetic relationship with the PBK gene of platypus. Gene expression analysis of eight tissues of a Meishan x Large White cross showed that the porcine PBK gene is differentially expressed in various tissues. Our experiment established the primary foundation for further research on this gene

    Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma

    Full text link
    We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate (C9_{9}H16_{16}O8_{8}) foam of 2 mg/cm−3^{-3} density, and 11-mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. The plasma parameters were diagnosed to be Te_{e}=17 eV and ne_{e}=4 ×\times 1020^{20} cm−3^{-3}. The average charge states passing through the plasma were observed to be higher than those predicted by the commonly-used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. In previsous measurement with partially ionized plasma from gas discharge and z-pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we were able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-Glass laser radiation. The finding is important for heavy ion beam driven high energy density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference

    Mean and SD values for mechanical properties obtained from three-point bending of the femur in the red-boned (n = 3) and common (n = 3) goats.

    No full text
    <p>Data are expressed as the means ± SD;</p>*<p>Significant difference between red-boned goats and common goats of the same age at <b><i>P</i></b><0.05, determined by Student's <i>t</i>-test.</p

    3-D microstructural properties of the mid-femoral diaphyseal cortical bone in test (T) and control (C) group rats after 1, 3 and 5 month of pseudopurpurin feeding (n = 10, in every batches).

    No full text
    <p>Data are expressed as the means ± SD;</p>a,b,c,d,e<p><b><i>P</i></b><0.05, vs. 1 month (C groups), 3 months (C groups), 5 months (C groups), 1 month (T groups) and 3 months (T groups) after pseudopurpurin feeding respectively (Bonferroni correction test).</p
    corecore