7,471 research outputs found

    Refractive index in holographic superconductors

    Full text link
    With the probe limit, we investigate the behavior of the electric permittivity and effective magnetic permeability and related optical properties in the s-wave holographic superconductors. In particular, our result shows that unlike the strong coupled systems which admit a gravity dual of charged black holes in the bulk, the electric permittivity and effective magnetic permeability are unable to conspire to bring about the negative Depine-Lakhtakia index at low frequencies, which implies that the negative phase velocity does not appear in the holographic superconductors under such a situation.Comment: JHEP style, 1+15 pages, 11 figures, version to appear in JHE

    The efficacy of silver diamine fluoride in arresting caries in children

    Get PDF
    Data sourcesPubMed, Scopus, Web of Science, the Latin American and Caribbean Health Sciences Literature database (LILACS), the Brazilian Library in Dentistry (BBO), Cochrane Library and grey literature.Study selectionTwo reviewers selected randomised clinical trials (RCTs) that compared the efficacy of SDF application with other active treatments or placebo in arresting carious lesions.Data extraction and synthesisThree authors extracted data using customised extraction forms, and risk of bias was assessed by two independent reviewers. Meta-analyses were performed on studies classified at 'low' or 'unclear' risk of bias, where similar outcomes were recorded in primary teeth, and that compared SDF to active treatments.ResultsEleven studies were included; five studies were at 'low', two at 'unclear' and four studies at 'high' risk of bias. Eight were conducted with primary teeth, two with permanent first molars and one conducted on both. Six studies used 38% SDF, two 30% SDF, one 12% SDF, one compared 38% SDF to 12% SDF and one used Nano Silver Fluoride (NSF).ConclusionsSDF is more effective than active treatments or placebo for carious lesion arrest in primary teeth. The body of evidence was of high quality for primary teeth. However, there was not enough high quality evidence to draw conclusions about carious lesion arrest in first permanent molars

    Magnetoresistance in La- and Ca-doped YBa2Cu3O7–δ

    Get PDF
    We studied the microstructures, electronic, and magnetic properties on La-doped and La- and Ca-codoped YBa2Cu3O7−δ (YBCO). The superconducting transition temperature remains unchanged up to 10% for La-doped YBCO. The competition between electrons and holons was assumed according to the variation of Tc0 in La and Ca codopings in YBCO. The magnetoresistance (MR) effect is about 8%, which is observed obviously near the critical temperature and is independent of the content of La in La-doped YBCO. MR increases up to about 40% with the incorporation of Ca in La-doped YBCO. We present here possible explanations for the magnetoresistance effect in polycrystalline samples based on the microstructure and the increase of oxygen vacancies at grain-boundary interface. © 2006 American Institute of Physicspublished_or_final_versio

    The effect of calcium on auxin depletion-induced tomato (Lycopersicon esculentum Mill.) pedicel abscission

    Get PDF
    Indole-3-acetic acid (IAA) and calcium are the most important factors that instigate plant organ abscission. This study aimed to elucidate the mechanisms that underlie the effects of IAA and calcium on delayed abscission in tomato. The results showed a clear trend towards reduced abscission rates with increased concentrations of IAA, and the applications on pedicel proximal or distal side also resulted in a different abscission. IAA combined with calcium significantly improved inhibition in contrast to IAA only, while IAA combined with magnesium exhibited little increased inhibition. 1-NNaphthylphthalamic acid (NPA), a polar auxin transport inhibitor, accelerated the abscission. IAA transported basipetally through an assay with 4 mm long pedicel sections indicated that the average transport intensity of [3H]-IAA applied to the distal pedicel end was 65 Bq h–1 and the average velocity was 5.29 mm h-1. When the proximal side was incubated in [3H]-IAA, its average transport intensity reduced to 19.53 Bq h–1 and the average velocity was only 1.92 mm h-1. Calcium treatment enhanced IAA transportation, as shown by significantly enhancing the transport intensity, but it had no effect on velocity.Keywords: Indole-3-acetic acid (IAA), calcium, abscission, tomat

    Loss of heterozygosity in multistage carcinogenesis of esophageal carcinoma at high-incidence area in Henan Province, China

    Get PDF
    Aim: Microsatellites are the repeated DNA sequences scattered widely within the genomes and closely linked with many important genes. This study was designed to characterize the changes of microsatellite DNA loss of heterozygosity (LOH) in esophageal carcinogenesis. Methods: Allelic deletions in 32 cases of matched precancerous, cancerous and normal tissues were examined by syringe microdissection under an anatomic microscope and microsatellite polymorphism analysis using 15 polymorphic markers on chromosomes 3p, 5q, 6p, 9p, 13q, 17p, 17q and 18q. Results: Microsatellite DNA LOH was observed in precancerous and cancerous tissues, except D9S1752. The rate of LOH increased remarkably with the lesions progressed from basal cell hyperplasia (BCH) to squamous cell carcinoma (SCC) (P60%). LOH loci were different in precancerous and cancerous tissues. LOH in D3S1234 and TP53 was the common event in different lesions from the same patients. Conclusion: Microsatellite DNA LOH occurs in early stage of human esophageal carcinogenesis, even in BCH. With the lesion progressed, gene instability increases, the accumulation of this change may be one of the important mechanisms driving precancerous lesions to cancer. © 2005 The WJG Press and Elsevier Inc. All rights reserved.published_or_final_versio

    Generalized Holographic Quantum Criticality at Finite Density

    Get PDF
    We show that the near-extremal solutions of Einstein-Maxwell-Dilaton theories, studied in ArXiv:1005.4690, provide IR quantum critical geometries, by embedding classes of them in higher-dimensional AdS and Lifshitz solutions. This explains the scaling of their thermodynamic functions and their IR transport coefficients, the nature of their spectra, the Gubser bound, and regulates their singularities. We propose that these are the most general quantum critical IR asymptotics at finite density of EMD theories.Comment: v4: Corrected the scaling equation for the conductivity in section 9.

    Microstructures and resistivity of cuprate/manganite bilayer deposited on SrTiO3 substrate

    Get PDF
    Thin Yba[SUB2]Cu[SUB3]O[SUB7-δ/La[SUB0.67]Ca[SUB0.33]MnO[SUB3] (YBCO/LCMO) films were grown on SrTiO[SUB3](STO)substrates by magnetron sputtering technique. The microstructures of the bilayers were characterized and a standard four-probe technique was applied to measure the resistivity of the samples. The interdiffusions at the YBCO/LCMO and LCMO/STO interfaces formed two transient layers with the thickness of about 3 and 2 nm, respectively. All the bilayers were well textured along the c axis. At low temperature, the superconductivity can only be observed when the thickness of YBCO is more than 25 nm. When the thickness of YBCO is less than 8 nm, the bilayers show only ferromagnetism. The superconductivity and ferromagnetism perhaps coexist in the bilayer with the YBCO thickness of 12.5 nm. These interesting properties are related to the interaction between spin polarized electrons in the manganites and the cooper pairs in the cuprates. © 2003 American Institute of Physics.published_or_final_versio

    Effective Holographic Theories for low-temperature condensed matter systems

    Get PDF
    The IR dynamics of effective holographic theories capturing the interplay between charge density and the leading relevant scalar operator at strong coupling are analyzed. Such theories are parameterized by two real exponents (γ,δ)(\gamma,\delta) that control the IR dynamics. By studying the thermodynamics, spectra and conductivities of several classes of charged dilatonic black hole solutions that include the charge density back reaction fully, the landscape of such theories in view of condensed matter applications is characterized. Several regions of the (γ,δ)(\gamma,\delta) plane can be excluded as the extremal solutions have unacceptable singularities. The classical solutions have generically zero entropy at zero temperature, except when γ=δ\gamma=\delta where the entropy at extremality is finite. The general scaling of DC resistivity with temperature at low temperature, and AC conductivity at low frequency and temperature across the whole (γ,δ)(\gamma,\delta) plane, is found. There is a codimension-one region where the DC resistivity is linear in the temperature. For massive carriers, it is shown that when the scalar operator is not the dilaton, the DC resistivity scales as the heat capacity (and entropy) for planar (3d) systems. Regions are identified where the theory at finite density is a Mott-like insulator at T=0. We also find that at low enough temperatures the entropy due to the charge carriers is generically larger than at zero charge density.Comment: (v3): Added discussion on the UV completion of the solutions, and on extremal spectra in the charged case. Expanded discusion on insulating extremal solutions. Many other refinements and corrections. 126 pages. 48 figure
    corecore