72,977 research outputs found

    Universal properties in ultracold ion-atom interactions

    Full text link
    We present some of the universal properties in ion-atom interaction derived from a newly formulated quantum-defect theory for −1/r4-1/r^4 type of long-range interactions. For bound states, we present the universal bound spectrum, namely the equivalent of the Rydberg formula, for ion-atom systems. For scattering, we introduce the concept of universal resonance spectrum to give a systematic understanding of many resonances present in ion-atom scattering. The theory further provides a method for an accurate spectroscopic determination of the atomic polarizability. It also suggests the existence of atom-like molecules, in which multiple atoms orbit around a heavy ion.Comment: 4 pages, 2 figure

    Holistic Influence Maximization: Combining Scalability and Efficiency with Opinion-Aware Models

    Full text link
    The steady growth of graph data from social networks has resulted in wide-spread research in finding solutions to the influence maximization problem. In this paper, we propose a holistic solution to the influence maximization (IM) problem. (1) We introduce an opinion-cum-interaction (OI) model that closely mirrors the real-world scenarios. Under the OI model, we introduce a novel problem of Maximizing the Effective Opinion (MEO) of influenced users. We prove that the MEO problem is NP-hard and cannot be approximated within a constant ratio unless P=NP. (2) We propose a heuristic algorithm OSIM to efficiently solve the MEO problem. To better explain the OSIM heuristic, we first introduce EaSyIM - the opinion-oblivious version of OSIM, a scalable algorithm capable of running within practical compute times on commodity hardware. In addition to serving as a fundamental building block for OSIM, EaSyIM is capable of addressing the scalability aspect - memory consumption and running time, of the IM problem as well. Empirically, our algorithms are capable of maintaining the deviation in the spread always within 5% of the best known methods in the literature. In addition, our experiments show that both OSIM and EaSyIM are effective, efficient, scalable and significantly enhance the ability to analyze real datasets.Comment: ACM SIGMOD Conference 2016, 18 pages, 29 figure

    Towards Anisotropy-Free and Non-Singular Bounce Cosmology with Scale-invariant Perturbations

    Full text link
    We investigate non-singular bounce realizations in the framework of ghost-free generalized Galileon cosmology, which furthermore can be free of the anisotropy problem. Considering an Ekpyrotic-like potential we can obtain a total Equation-of-State (EoS) larger than one in the contracting phase, which is necessary for the evolution to be stable against small anisotropic fluctuations. Since such a large EoS forbids the Galileon field to generate the desired form of perturbations, we additionally introduce the curvaton field which can in general produce the observed nearly scale-invariant spectrum. In particular, we provide approximate analytical and exact semi-analytical expressions under which the bouncing scenario is consistent with observations. Finally, the combined Galileon-curvaton system is free of the Big-Rip after the bounce.Comment: 13 pages, 9 figure
    • …
    corecore