2,423 research outputs found

    Activation of 5-HT 2A Receptor Disrupts Rat Maternal Behavior

    Get PDF
    Serotonin 5-HT2A receptor is widely distributed in the central nervous system and plays an important role in sensorimotor function, emotion regulation, motivation, executive control, learning and memory. We investigated its role in rat maternal behavior, a naturalistic behavior encompassing many psychological functions that the 5-HT2A receptor is involved in. We first showed that activation of 5-HT2A receptor by TCB-2 (a highly selective 5-HT2A agonist, 1, 2.5 or 5.0 mg/kg) disrupted maternal behavior dose-dependently, and this effect was reduced by pretreatment with a 5-HT2A receptor antagonist MDL 100907, but exacerbated by pretreatment with a 5-HT2C receptor antagonist SB242084 and a 5-HT2C receptor agonist MK212, indicating that the maternal disruptive effect of 5-HT2A activation is receptor-specific and can be modulated by 5-HT2C receptor bidirectionally. We then microinjected TCB-2 into two brain regions important for the normal expression of maternal behavior: the medial prefrontal cortex (mPFC) and the medial preoptic area (mPOA) and found that only acute intra-mPFC infusion of TCB-2 suppressed pup retrieval, whereas intra-mPOA had no effect. Finally, using c-Fos immunohistochemistry, we identified that the ventral bed nucleus of stria terminalis (vBNST), the central amygdala (CeA), and the dorsal raphe (DR) were additionally involved in the maternal-disruptive effect of TCB-2. These findings suggest that the 5-HT2A receptor in the mPFC and other maternally related regions is required for the normal expression of maternal behavior through its intrinsic action or interactions with other receptors (e.g. 5-HT2C). Functional disruption of this neuroreceptor system might contribute to postpartum mental disorders (e.g. depression and psychosis) that impair the quality of maternal care

    Differential effects of intermittent versus continuous haloperidol treatment throughout adolescence on haloperidol sensitization and social behavior in adulthood

    Get PDF
    Animal work on the behavioral effects of antipsychotic treatment suggests that different dosing regimens could affect drug sensitivity differently, with an intermittent treatment regimen tending to cause a sensitization effect, while a continuous treatment causing a tolerance. In this study, we explored how haloperidol (HAL) sensitization induced throughout adolescence and tested in adulthood was differentially impacted by these two dosing regimens in the conditioned avoidance response (CAR) test.We also examined howthese two dosing regiments affected social interaction and social memory in adulthood. Male adolescent Sprague-Dawley rats were treated with HAL via either osmotic minipump(HAL-0.25 CONT; 0.25mgkg−1 day−1, n=14) or daily injection (HAL-0.05 INT; 0.05mg kg−1 day−1 injection, sc, n=14), or sterile water (n=14) from postnatal days (PND) 44 to 71. HAL sensitization was assessed in a challenge test in which all rats were injected with HAL (0.025 and 0.05 mg/kg, sc) on PND 80 and PND 82. Two days later, half of the rats from each group (n=7/group)were assayed in two 4-trial social interaction tests inwhich a subject rat was given four 5-min social encounters with a familiar or novel juvenile rat (PND 35-40) at 10 min intervals. Another half were tested in a quinpirole-induced hyperlocomotion assay to assess the potential HAL-induced change in D2-mediated function. Results show that only the intermittent dosing group under the HAL 0.05 mg/kg challenge showed a robust sensitization effect as rats in this group made significantly fewer avoidance responses than those in the vehicle and HAL-0.25 CONT groups. Adolescent HAL treatment did not affect social behavior and social memory, as rats from all 3 groups exhibited a similar level of social interaction and showed a similar level of sensitivity to the change of social stimuli. Similarly, adolescent HAL treatment also did not produce a long-lasting change in D2 function, as all 3 groups exhibited a similar level of increase in motor activity under quinpirole challenge. These findings suggest that HAL sensitization is a dosingspecific phenomenon. It ismore likely to be seen under an intermittent dosing regimen than under a continuous dosing one. The findings that the intermittent HAL treatment did not impair social functioning and did not alter D2 function suggest a dissociation between drug-induced alterations in drug sensitivity and those in social function and neuroreceptors

    Activation of 5-HT 2A Receptor Disrupts Rat Maternal Behavior

    Get PDF
    Serotonin 5-HT2A receptor is widely distributed in the central nervous system and plays an important role in sensorimotor function, emotion regulation, motivation, executive control, learning and memory. We investigated its role in rat maternal behavior, a naturalistic behavior encompassing many psychological functions that the 5-HT2A receptor is involved in. We first showed that activation of 5-HT2A receptor by TCB-2 (a highly selective 5-HT2A agonist, 1, 2.5 or 5.0 mg/kg) disrupted maternal behavior dose-dependently, and this effect was reduced by pretreatment with a 5-HT2A receptor antagonist MDL 100907, but exacerbated by pretreatment with a 5-HT2C receptor antagonist SB242084 and a 5-HT2C receptor agonist MK212, indicating that the maternal disruptive effect of 5-HT2A activation is receptor-specific and can be modulated by 5-HT2C receptor bidirectionally. We then microinjected TCB-2 into two brain regions important for the normal expression of maternal behavior: the medial prefrontal cortex (mPFC) and the medial preoptic area (mPOA) and found that only acute intra-mPFC infusion of TCB-2 suppressed pup retrieval, whereas intra-mPOA had no effect. Finally, using c-Fos immunohistochemistry, we identified that the ventral bed nucleus of stria terminalis (vBNST), the central amygdala (CeA), and the dorsal raphe (DR) were additionally involved in the maternal-disruptive effect of TCB-2. These findings suggest that the 5-HT2A receptor in the mPFC and other maternally related regions is required for the normal expression of maternal behavior through its intrinsic action or interactions with other receptors (e.g. 5-HT2C). Functional disruption of this neuroreceptor system might contribute to postpartum mental disorders (e.g. depression and psychosis) that impair the quality of maternal care

    Effects of central activation of serotonin 5-HT2A/2C or dopamine D-2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    Get PDF
    Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect

    Boosting In-Context Learning with Factual Knowledge

    Full text link
    In-Context Learning (ICL) over Large language models (LLMs) aims at solving previously unseen tasks by conditioning on a few training examples, eliminating the need for parameter updates and achieving competitive performance. In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets, i.e., the inherent knowledge learned in LLMs, the factual knowledge derived from the selected in-context examples, and the knowledge biases in LLMs for output generation. To unleash the power of LLMs in few-shot learning scenarios, we introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL: 1) injecting factual knowledge to LLMs during continual self-supervised pre-training, 2) judiciously selecting the examples with high knowledge relevance, and 3) calibrating the prediction results based on prior knowledge. We evaluate the proposed approaches on auto-regressive LLMs (e.g., GPT-style models) over multiple text classification and question answering tasks. Experimental results demonstrate that KICT substantially outperforms strong baselines, and improves by more than 13% and 7% of accuracy on text classification and question answering tasks, respectively

    Requirement of extracellular signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult mouse anterior cingulate cortex

    Get PDF
    Long-term potentiation (LTP) in the anterior cingulate cortex (ACC) is believed to be critical for higher brain functions including emotion, learning, memory and chronic pain. N-methyl-D-aspartate (NMDA) receptor-dependent LTP is well studied and is thought to be important for learning and memory in mammalian brains. As the downstream target of NMDA receptors, the extracellular signal-regulated kinase (ERK) in the mitogen-activated protein kinase (MAPK) cascade has been extensively studied for its involvement in synaptic plasticity, learning and memory in hippocampus. By contrast, the role of ERK in cingulate LTP has not been investigated. In this study, we examined whether LTP in ACC requires the activation of ERK. We found that P42/P44 MAPK inhibitors, PD98059 and U0126, suppressed the induction of cingulate LTP that was induced by presynaptic stimulation with postsynaptic depolarization (the pairing protocol). We also showed that cingulate LTP induced by two other different protocols was also blocked by PD98059. Moreover, we found that these two inhibitors had no effect on the maintenance of cingulate LTP. Inhibitors of c-Jun N-terminal kinase (JNK) and p38, other members of MAPK family, SP600125 and SB203850, suppressed the induction of cingulate LTP generated by the pairing protocol. Thus, our study suggests that the MAPK signaling pathway is involved in the induction of cingulate LTP and plays a critical role in physiological conditions
    corecore