3,089 research outputs found

    Strain-mediated electric-field control of photoinduced demagnetization in La0.8 Ca0.2 MnO3 thin films

    Get PDF
    La0.8 Ca0.2 MnO3 (LCMO) thin films have been epitaxially grown on ferroelectric 0.67Pb (Mg1/3 Nb 2/3) O3-0.33 PbTiO3 (PMN-PT) substrates. The substrate-induced strain effects on the transport and photoinduced demagnetization in LCMO films were investigated. The photoinduced resistances (PRs) of LCMO systematically changed versus temperature before and after ferroelectric-poling on PMN-PT, indicating that photoexcited extra carriers in LCMO may suppress the neighboring spin correlation due to the photoassisted hopping of anti-Jahn-Teller polarons. Moreover, a significant modulation on PR by electric fields applied across PMN-PT was observed. In situ x-ray diffraction indicates that the observed variations result from substrate-induced strain due to the ferroelectric polarization or converse piezoelectric effect. © 2011 American Institute of Physics.published_or_final_versio

    Phase diagram and spin-glass phenomena in electron-doped La1-xHfxMnO3 (0.05 ≤ x ≤ 0.3) manganite oxides

    Get PDF
    The effects of tetravalent hafnium doping on the structural, transport, and magnetic properties of polycrystalline La1−xHfxMnO3 (LHMO) (0.05 ≤ x ≤ 0.3) were investigated systematically. LHMO exhibited a typical colossal magnetoresistance effect via the double-exchange between Mn2+ and Mn3+ ions, instead of that between Mn3+ and Mn4+ ions in hole-doped manganites. A phase diagram was obtained for the first time through magnetization and resistance measurements in a broad temperature range. As the Hf concentration varied from x = 0.05 to 0.3, the Curie point and metal-to-insulator transition temperature increased significantly, whereas the magnetization and resistivity decreased remarkably. An abnormal enhancement of the magnetization was observed at about 42 K. It was further confirmed that a second magnetic phase MnO2 in LHMO gives rise to such a phenomenon. The possible causes are discussed in detail. The dynamic magnetic properties of LHMO, including relaxation and aging processes, were studied, demonstrating a spin-glass state at low temperature accompanied by a ferromagnetic phase.published_or_final_versio

    Magnetic field mediated low-temperature resistivity upturn in electron-doped La1-xHfxMnO3 manganite oxides

    Get PDF
    published_or_final_versio

    Suppression of photoconductivity by magnetic field in epitaxial manganite thin films

    Get PDF
    The erasure of photoinduced resistance (PR) by the magnetic field was investigated in manganite films. The PR was significantly suppressed when a magnetic field was introduced at low temperature. The decrease (or increase) of PR with increment of magnetic field was observed in ferromagnetic (or paramagnetic) phases of films, respectively. Our results are suggested to be the coaction of two effects under magnetic fields: (i) the reorientation of domains and spin directions of photoexcited carriers and (ii) electrons trapped around oxygen vacancies released and recombined with majority carriers in films. The interplay of the external fields is a good demonstration of the strong coupling between spins and charges in colossal magnetoresistance materials. © 2012 American Institute of Physics.published_or_final_versio

    Groundwater Nitrogen Pollution and Assessment of Its Health Risks: A Case Study of a Typical Village in Rural-Urban Continuum, China

    Get PDF
    Protecting groundwater from nitrogen contamination is an important public-health concern and a major national environmental issue in China. In this study, we monitored water quality in 29 wells from 2009 to 2010 in a village in Shanghai city, whick belong to typical rural-urban continuum in China. The total N and NO3-N exhibited seasonal changes, and there were large fluctuations in NH4-N in residential areas, but without significant seasonal patterns. NO2-N in the water was not stable, but was present at high levels. Total N and NO3-N were significantly lower in residential areas than in agricultural areas. The groundwater quality in most wells belonged to Class III and IV in the Chinese water standard, which defines water that is unsuitable for human consumption. Our health risk assessments showed that NO3-N posed the greatest carcinogenic risk, with risk values ranging from 19×10−6 to 80×10−6, which accounted for more than 90% of the total risk in the study area

    Study of psi(2S) decays to X J/psi

    Full text link
    Using J/psi -> mu^+ mu^- decays from a sample of approximately 4 million psi(2S) events collected with the BESI detector, the branching fractions of psi(2S) -> eta J/psi, pi^0 pi^0 J/psi, and anything J/psi normalized to that of psi(2S) -> pi^+ pi^- J/psi are measured. The results are B(psi(2S) -> eta J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.098 \pm 0.005 \pm 0.010, B(psi(2S) -> pi^0 pi^0 J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 0.570 \pm 0.009 \pm 0.026, and B(psi(2S) -> anything J/psi)/B(psi(2S) -> pi^+ pi^- J/psi) = 1.867 \pm 0.026 \pm 0.055.Comment: 13 pages, 8 figure

    In situ epitaxial engineering of graphene and h-BN lateral heterostructure with a tunable morphology comprising h-BN domains

    Get PDF
    Graphene and hexagonal boron nitride (h-BN), as typical two-dimensional (2D) materials, have long attracted substantial attention due to their unique properties and promise in a wide range of applications. Although they have a rather large difference in their intrinsic bandgaps, they share a very similar atomic lattice; thus, there is great potential in constructing heterostructures by lateral stitching. Herein, we present the in situ growth of graphene and h-BN lateral heterostructures with tunable morphologies that range from a regular hexagon to highly symmetrical star-like structure on the surface of liquid Cu. The chemical vapor deposition (CVD) method is used, where the growth of the h-BN is demonstrated to be highly templated by the graphene. Furthermore, large-area production of lateral G-h-BN heterostructures at the centimeter scale with uniform orientation is realized by precisely tuning the CVD conditions. We found that the growth of h-BN is determined by the initial graphene and symmetrical features are produced that demonstrate heteroepitaxy. Simulations based on the phase field and density functional theories are carried out to elucidate the growth processes of G-h-BN flakes with various morphologies, and they have a striking consistency with experimental observations. The growth of a lateral G-h-BN heterostructure and an understanding of the growth mechanism can accelerate the construction of various heterostructures based on 2D materials

    Vehicle optimal road departure prevention via model predictive control

    Get PDF
    This article addresses the problem of road departure prevention using integrated brake control. The scenario considered is when a high speed vehicle leaves the highway on a curve and enters the shoulder or another lane, due to excessive speed, or where the friction of the road drops due to adverse weather conditions. In such a scenario, the vehicle speed is too high for the available tyre-road friction and road departure is inevitable; however, its effect can be minimized with an optimal braking strategy. To achieve online implementation, the task is formulated as a receding horizon optimization problem and solved in a linear model predictive control (MPC) framework. In this formulation, a nonlinear tire model is adopted in order to work properly at the friction limits. The optimization results are close to those obtained previously using a particle model optimization, PPR, coupled to a control algorithm, MHA, specifically designed to operate at the vehicle friction limits. This shows the MPC formulation may equally be effective for vehicle control at the friction limits. The major difference here, compared to the earlier PPR/MHA control formulation, is that the proposed MPC strategy directly generates an optimal brake sequence, while PPR provides an optimal reference first, then MHA responds to the reference to give closed-loop actuator control. The presented MPC approach has the potential to be used in futur

    Effects of cultivation years on effective constituent content of Fritillaria pallidiflora Schernk

    Get PDF
    Fritillaria pallidiflora Schrenk has been treasured in traditional classic medicine as an antitussive, antiasthmatic and expectorant for hundreds of years. With gradually decreasing wild F. pallidiflora resources, the herb can no longer satisfy the demand. Artificial cultivation is one of the most effective ways to solve the contradiction between supply and demand in the medicinal material market. During the growth of Rhizomes medicinal plants, root biomass and active ingredient content showed dynamic accumulated variation with increasing cultivation years. Up to now, hardly any attempts have been made to investigate the relationship between quality and cultivation years of F. pallidiflora. Therefore, in this paper, we determined the optimum harvesting time by comparing biomass and biological characteristics of F. pallidiflora at different cultivation times. High-performance liquid chromatography with evaporative light scattering detection and phenol-sulfuric acid visible spectrophotometry was performed to determine imperialine and polysaccharide content of F. pallidiflora bulbs. From year 1 to 6 of cultivation, we observed an upward trend in plant height, diameter and dry weight of F. pallidiflora, while water content decreased. Plant height and dry weight increased remarkably during the fourth year of cultivation. The content of imperialine and polysaccharide of F. pallidiflora bulbs, on the other hand, showed an upward trend from year 1 to 3, after which it decreased from year 3 to 6. By comparing plant growth, biomass development and the accumulation of imperialine and polysaccharide, the best harvesting time of F. pallidiflora was determined to be after 4 years of cultivation. Our results showed that it is possible to establish a safe, effective, stable and controllable production process, which could play an important role in achieving sustainable utilization of F. pallidiflora resources.Fritillaria pallidiflora Schrenk has been treasured in traditional classic medicine as an antitussive, antiasthmatic and expectorant for hundreds of years. With gradually decreasing wild F. pallidiflora resources, the herb can no longer satisfy the demand. Artificial cultivation is one of the most effective ways to solve the contradiction between supply and demand in the medicinal material market. During the growth of Rhizomes medicinal plants, root biomass and active ingredient content showed dynamic accumulated variation with increasing cultivation years. Up to now, hardly any attempts have been made to investigate the relationship between quality and cultivation years of F. pallidiflora. Therefore, in this paper, we determined the optimum harvesting time by comparing biomass and biological characteristics of F. pallidiflora at different cultivation times. High-performance liquid chromatography with evaporative light scattering detection and phenol-sulfuric acid visible spectrophotometry was performed to determine imperialine and polysaccharide content of F. pallidiflora bulbs. From year 1 to 6 of cultivation, we observed an upward trend in plant height, diameter and dry weight of F. pallidiflora, while water content decreased. Plant height and dry weight increased remarkably during the fourth year of cultivation. The content of imperialine and polysaccharide of F. pallidiflora bulbs, on the other hand, showed an upward trend from year 1 to 3, after which it decreased from year 3 to 6. By comparing plant growth, biomass development and the accumulation of imperialine and polysaccharide, the best harvesting time of F. pallidiflora was determined to be after 4 years of cultivation. Our results showed that it is possible to establish a safe, effective, stable and controllable production process, which could play an important role in achieving sustainable utilization of F. pallidiflora resources
    corecore