40 research outputs found

    Controllable Preparation and the Tribological Properties of Bimetal Oxide Zn

    No full text
    The bimetallic oxide films with different contents of Zn and Ti were prepared by magnetron sputtering and the films were annealed at 600Ā°C. The relationship between the structure and properties with different content of elements before and after annealed was comprehensively analyzed. It was found that with the decrease of Zn content, the number of the nuclear inside the film increased and the surface became denser. Therefore, the hardness and bonding strength gradually increased. The friction coefficient and the wear rate of the film were 0.154 and 7.4Ɨ10-6 mm3/N/m respectively, due to the formation of ZnTiO3 and ZnO composite phases with lubricity on the surface

    Study on Preparation and Physical Mechanical Properties of Si3N4 Composite Ceramics

    No full text
    In this paper, by using the hot-pressed sintered technology, pure Si3N4 ceramics and Si3N4 composite ceramics containing different volume fraction(hBN) are prepared with the sintered catalyst of Al2O3 and Y2O3(total 10vol%) by HIGH MULTI 5000 multi-functional high temperature sintering furnace. And the phase compositions, microstructure and mechanical properties of specimen were studied. The results show that, based on the hot pressing sintering process, the Ī±-Si3N4 is all changed into Ī²-Si3N4. Addition of hBN into Si3N4 inhibits the growth of the crystal grain and makes the ceramic materials generate hBN segregation zone in internal materials, which causes the addition of hBN that cannot improve the physical mechanical properties effectively just because the serious stress concentrates and fatigue break down. In addition, compared with other sintering process, the physical and mechanical properties of Si3N4 prepared by hot-pressing sintering are better than other methods. Improvement of sintering temperature and time can refine the crystal grain and be a helpful densification. The changed Ī²-Si3N4 grain completely forms an intertwined structure and increases the physical and mechanical properties of Si3N4. Meanwhile, Y2O3 and Al2O3 additives are melted and filled into Si3N4 particles at the high temperature, leading to a significant drop of the porosity and the increase of density

    Study on Preparation and Physical Mechanical Properties of Si

    No full text
    In this paper, by using the hot-pressed sintered technology, pure Si3N4 ceramics and Si3N4 composite ceramics containing different volume fraction(hBN) are prepared with the sintered catalyst of Al2O3 and Y2O3(total 10vol%) by HIGH MULTI 5000 multi-functional high temperature sintering furnace. And the phase compositions, microstructure and mechanical properties of specimen were studied. The results show that, based on the hot pressing sintering process, the Ī±-Si3N4 is all changed into Ī²-Si3N4. Addition of hBN into Si3N4 inhibits the growth of the crystal grain and makes the ceramic materials generate hBN segregation zone in internal materials, which causes the addition of hBN that cannot improve the physical mechanical properties effectively just because the serious stress concentrates and fatigue break down. In addition, compared with other sintering process, the physical and mechanical properties of Si3N4 prepared by hot-pressing sintering are better than other methods. Improvement of sintering temperature and time can refine the crystal grain and be a helpful densification. The changed Ī²-Si3N4 grain completely forms an intertwined structure and increases the physical and mechanical properties of Si3N4. Meanwhile, Y2O3 and Al2O3 additives are melted and filled into Si3N4 particles at the high temperature, leading to a significant drop of the porosity and the increase of density

    Unique Tubulin-Based Structures in the Zoonotic Apicomplexan Parasite Cryptosporidium parvum

    No full text
    Cryptosporidium parasites are known to be highly divergent from other apicomplexan species at evolutionary and biological levels. Here we provide evidence showing that the zoonotic Cryptosporidium parvum also differs from other apicomplexans, such as Toxoplasma gondii, by possessing only two tubulin-based filamentous structures, rather than an array of subpellicular microtubules. Using an affinity-purified polyclonal antibody against C. parvum Ī²-tubulin (CpTubB), we observed a long and a short microtubule that are rigid and stable in the sporozoites and restructured during the intracellular parasite development. In asexual development (merogony), the two restructuring microtubules are present in pairs (one pair per nucleus or merozoites). In sexual developmental stages, tubulin-based structures are detectable only in microgametes, but undetectable in macrogametes. These observations indicate that C. parvum parasites use unique microtubule structures that differ from other apicomplexans as part of their cytoskeletal elements

    Interfacial engineering of nickel/vanadium based two-dimensional layered double hydroxide for solid-state hydrogen storage in MgHā‚‚

    No full text
    As a high-density solid-state hydrogen storage material, magnesium hydride (MgH2) is promising for hydrogen transportation and storage. Yet, its stable thermodynamics and sluggish kinetics are unfavorable for that required for commercial application. Herein, nickel/vanadium trioxide (Ni/V2O3) nanoparticles with heterostructures were successfully prepared via hydrogenating the NiV-based two-dimensional layered double hydroxide (NiV-LDH). MgH2 + 7 wt% Ni/V2O3 presented more superior hydrogen absorption and desorption performances than pure MgH2 and MgH2 + 7 wt% NiV-LDH. The initial discharging temperature of MgH2 was significantly reduced to 190 Ā°C after adding 7 wt% Ni/V2O3, which was 22 and 128 Ā°C lower than that of 7 wt% NiV-LDH modified MgH2 and additive-free MgH2, respectively. The completely dehydrogenated MgH2 + 7 wt% Ni/V2O3 charged 5.25 wt% H2 in 20 min at 125 Ā°C, while the hydrogen absorption capacity of pure MgH2 only amounted to 4.82 wt% H2 at a higher temperature of 200 Ā°C for a longer time of 60 min. Moreover, compared with MgH2 + 7 wt% NiV-LDH, MgH2 + 7 wt% Ni/V2O3 shows better cycling performance. The microstructure analysis indicated the heterostructural Ni/V2O3 nanoparticles were uniformly distributed. Mg2Ni/Mg2NiH4 and metallic V were formed in-situ during cycling, which synergistically tuned the hydrogen storage process in MgH2. Our work presents a facile interfacial engineering method to enhance the catalytic activity by constructing a heterostructure, which may provide the mentality of designing efficient catalysts for hydrogen storage.The authors appreciatively acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 51801078)

    A Single-Pass Type I Membrane Protein from the Apicomplexan Parasite Cryptosporidium parvum with Nanomolar Binding Affinity to Host Cell Surface

    No full text
    Cryptosporidium parvum is a globally recognized zoonotic parasite of medical and veterinary importance. This parasite mainly infects intestinal epithelial cells and causes mild to severe watery diarrhea that could be deadly in patients with weakened or defect immunity. However, its molecular interactions with hosts and pathogenesis, an important part in adaptation of parasitic lifestyle, remain poorly understood. Here we report the identification and characterization of a C. parvum T-cell immunomodulatory protein homolog (CpTIPH). CpTIPH is a 901-aa single-pass type I membrane protein encoded by cgd5_830 gene that also contains a short Vibrio, Colwellia, Bradyrhizobium and Shewanella (VCBS) repeat and relatively long integrin alpha (ITGA) N-terminus domain. Immunofluorescence assay confirmed the location of CpTIPH on the cell surface of C. parvum sporozoites. In congruence with the presence of VCBS repeat and ITGA domain, CpTIPH displayed high, nanomolar binding affinity to host cell surface (i.e., Kd(App) at 16.2 to 44.7 nM on fixed HCT-8 and CHO-K1 cells, respectively). The involvement of CpTIPH in the parasite invasion is partly supported by experiments showing that an anti-CpTIPH antibody could partially block the invasion of C. parvum sporozoites into host cells. These observations provide a strong basis for further investigation of the roles of CpTIPH in parasite-host cell interactions

    Tanshinone IIA attenuates valvular interstitial cellsā€™ calcification induced by oxidized low density lipoprotein via reducing endoplasmic reticulum stress

    No full text
    Recent studies revealed that endoplasmic reticulum (ER) stress played an emerging role of in valve calcification. Tanshinone IIA (TanIIA) has been a research hotspot in cardiovascular diseases. Previously we found that sodium TanIIA dampened the pathological phenotype transition of valvular interstitial cells (VICs) by affecting ER stress published in Chinese Journal. Here, we test the hypothesis that TanIIA attenuates the pro-osteogenic effects of oxidized low-density lipoprotein (oxLDL) in VICs by reducing induction of ER stress. Patientsā€™ aortic valve (AV) was collected, and porcine VICs were cultured for in vitro model. ER stress markers were tested in human leaflets by immunostaining. Immunoblotting were used to test the osteoblastic factors such as Runx2, osteocalcin, and ER stress markers GRP78, CHOP, XBP1, etc. Alkakine phosphate (ALP) activity assay were used to test the activity of ALP kinase. Pro-inflammatory gene expression was detected by polymerase chain reaction. As a result, ER stress markers were elevated in patientsā€™ calcified AVs. OxLDL induced osteogenesis and inflammation via promoting ER stress. TanIIA attenuated oxLDL induced ER stress. TanIIA also inhibited theosteoblastic factors and inflammatory cytokine expressions in VICs. In conclusion, our data provide evidence that TanIIA exerts anti-inflammation and anti-osteogenic effects in VICs by attenuating ER stress, and ER stress acts as an important regulator in oxLDL induced VICsā€™ phenotype transition

    Molecular signature of soil organic matter under different land uses in the Lake Chaohu Basin

    No full text
    The concentration and molecular composition of soil organic matter (SOM) are important factors in mitigation against climate change as well as providing other ecosystem services. Our quantitative understanding of how land use influences SOM molecular composition and associated turnover dynamics is limited, which underscores the need for high-throughput analytical approaches and molecular marker signatures to clarify this etiology. Combining a high-throughput untargeted mass spectrometry screening and molecular markers, we show that forest, farmland and urban land uses result in distinct molecular signatures of SOM in the Lake Chaohu Basin. Molecular markers indicate that forest SOM has abundant carbon contents from vegetation and condensed organic carbon, leading to high soil organic carbon (SOC) concentration. Farmland SOM has moderate carbon contents from vegetation, and limited content of condensed organic carbon, with SOC significantly lower than that of forest soils. Urban SOM has high abundance of condensed organic carbon markers due to anthropogenic activities but relatively low in markers from vegetation. Consistently, urban soils have the highest black carbon/SOC ratio among these land uses. Overall, our results suggested that the molecular signature of SOM varies significantly with land use in the Lake Chaohu Basin, influencing carbon dynamics. Our strategy of molecular fingerprinting and marker discovery is expected to enlighten further research on SOM molecular signatures and cycling dynamics

    Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium

    No full text
    Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance
    corecore