848 research outputs found

    Melanocytes and Skin Immunity

    Get PDF

    Cosmology-independent Estimate of the Fraction of Baryon Mass in the IGM from Fast Radio Burst Observations

    Full text link
    The excessive dispersion measure (DM) of fast radio bursts (FRBs) has been proposed to be a powerful tool to study intergalactic medium (IGM) and to perform cosmography. One issue is that the fraction of baryons in the IGM, f IGM, is not properly constrained. Here, we propose a method of estimating f IGM using a putative sample of FRBs with the measurements of both DM and luminosity distance d L. The latter can be obtained if the FRB is associated with a distance indicator (e.g., a gamma-ray burst or a gravitational-wave event), or the redshift z of the FRB is measured and d L at the corresponding z is available from other distance indicators (e.g., SNe Ia) at the same redshift. As d L/DM essentially does not depend on cosmological parameters, our method can determine f IGM independent of cosmological parameters. We parameterize f IGM as a function of redshift and model the DM contribution from a host galaxy as a function of star formation rate. Assuming f IGM has a mild evolution with redshift with a functional form and by means of Monte Carlo simulations, we show that an unbiased and cosmology-independent estimate of the present value of f IGM with a ~12% uncertainty can be obtained with 50 joint measurements of d L and DM. In addition, such a method can also lead to a measurement of the mean value of DM contributed from the local host galaxy

    PO-053 Plasma Metabolic Profiles of Elite Rowers Response to the Early Phase of Altitude Training Based on LC-MS

    Get PDF
    Objective When arriving at altitude, because of the dry air, strong ultraviolet and especially the low oxygen et.al., athletes who living on the plain always exhibited kinds of stress reactions such as hyperventilation, tachycardia, dizziness, sleep-disorder, gastrointestinal disturbance and cognitive impairment in the early phase. Except these stress reactions, some studies reported the carbohydrate and lipid metabolism show significant change. Acute exposure to hypoxia could strengthen the glycolysis and suppress hepatic gluconeogenesis. The expression of some genes involved in lipid oxidation was down-regulated. However, it’s also found the increased activity of some enzymes took part in aerobic metabolism in muscle after long term acclimatization to altitude. These inconsistent conclusions make us confusion. Train load is an important factor influence the stress reactions which isn’t like as altitude travel for normal people. What would happen in the body of athletes when altitude training? We still know very little. Metabonomic give us a new tool to understand the whole map of body’s reaction to altitude training. In this pilot study, we aimed to explore the plasma profiles changes of elite rowers in the early two-weeks training at 2300m plateau using metabolic tool based on LC-MS. Methods Sixteen male elite rowers(age 25.56±3.44y, height 189.06±5.37cm, weight 82.81±12.25kg, training years 10.31±2.52y) from China National team took part in this research. This altitude training camp was organized in the preparation period of a new season. It lasted six weeks. The acute phase (AP) which was the first three days after arriving at 2300m altitude base was composed by regenerative training and low-intensity aerobic training sessions. During the next ten days (chronic phase, CP), the intensity of most sessions including three low-weight resistance training sets were low to middle aerobic. After resting half day, 5 ml venous blood was collected into heparin anticoagulant tubes and then centrifuged at 8000rpm in 4℃ lasting 15 minutes to separate plasma in the 4th day and 14th morning. Plasma was stored in -80℃ to measure metabolic profile by LC-MS. The data was performed feature extraction and preprocessed with Compound Discoverer 2.0 software (Thermo), and then normalized and edited into two-dimensional data matrix by excel 2010 software, including Retention time(RT), Compound Molecular Weight (compMW), Observations(samples) and peak intensity. The feature data after editing were performed Multivariate Analysis (MVA) using SIMCA-P software (Umetrics AB, Umea, Sweden). Results Compared with pre-altitude, 26 and 30 features at (ESI+) ion mode, 57 and 49 features at (ESI-) ion mode were found in the AP and CP respectively. Compared AP with CP, there were 46 features at (ESI+) ion mode and 67 features at (ESI-) ion mode. In AP, plasma benzamide and indole-3-acetaldehyde increased 35.16 fold and 16.54 fold respectively. Plasma phenethylamine, phenol, indole, piperidine, leucine, 4-chlorbenzoic acid and benzoic acid increased 4.55 to 8.22 fold compared with pre-altitude. Top three decreased features were dibutyl sebacate, arbinosylhypoxanthine and cholesterol hydrogen sulfate which decreased 1.76 to 3.85 fold in AP. After a longer adaption, in the 14th day of altitude training, plasma benzamide, indole-3-acetaldehyde, phenethylamine, indole, 4-chlorbenzoic acid and benzoic acid still increased but the amplitude reduced compared with the 4th day. Ingenuity Pathways Analysis (IPA) suggested that the top 5 canonical pathways were tyrosine biosynthesis Ⅳ, phenylalanine degradationⅠ, protein kinase A signaling, tRNA charging and phenylalanine degradation Ⅳ in AP. In CP, the top 5 canonical pathways were tRNA charging, urate biosynthesis, tryptophan degradation Ⅹ, guanosine nucleotides degradation Ⅲ and adenosine nucleotides degradationⅡ. Conclusions In this pilot study, we found 83 and 79 plasma feature in acute and chronic phase respectively. Considering the sharp elevation, plasma benzamide and indole-3-acetaldehyde which involved in the regulation of energy metabolism of brain may be the sensitive makers in acute adaption to altitude for athletes. As the extension of time, the increased amplitude came down in the 14th day. It suggested that the energy metabolism of brain may take significant change. Central nerve system should be paid more attention during altitude training especially in the early phase

    PO-096 Correlation between Muscle oxygen and Cardiopulmonary of young cyclists at Ventilation threshold

    Get PDF
    Objective To investigate the relationship between Near-infrared spectroscopy (NIRS)-derived muscle oxygen saturation (SmO2) and Cardiopulmonary indexes at the Ventilatory threshold (VT1 and VT2) during Cardiopulmonary exercise test (CPET) ofyoung cyclists. Methods 12 young cyclists performed a maximal incremental exercise test to exhaustion on a friction-braked cycle ergometer (Monark 839E, Sweden).Heart rate (Polar RS400, Finland) and respiratory gas exchange were measured during the Resting and exercise phases using a breath-by-breath system. SmO2 of active muscles during cycling was measured by NIRS monitors (Fortiori Design LLC, USA), and three of the monitors were placed on both vastus lateralis (VLL & VLR) and left gastrocnemius lateralis (GLL) of left leg. The resting value of the SmO2 of the GLL (SmO2-GLL), the left vastus lateralis (SmO2-VLL), and the right vastus lateralis (SmO2-VLR) was recorded as a baseline.  Then after VT1 and VT2 of each subject were measured by the V-slope method during a CPET, values of muscle oxygen corresponding to the three lower limb sites at two ventilation thresholds was recorded to reflect the muscle oxygenation level at the anaerobic threshold; And the change of muscle oxygen relative to the baseline was calculated to reflect the degree of muscle deoxygenation, which is termed as deoxygenation indexes(ΔSmO2-GLL, ΔSmO2-VLL, ΔSmO2-VLR); As well, Cardiopulmonary indexes including Heart rate (HR), Minute ventilation (VE), Relative oxygen uptake (VO2R), Carbon dioxide production (VCO2) and Respiratory exchange rate (RER) at the Ventilatory threshold were measured. All Results were expressed as mean ± standard deviation. Finally, Pearson correlation analysis was used to determine the relationship between multi-site muscle oxygen saturation of lower extremities and Cardiopulmonary indexes (HR, VE, VO2R, VCO2, RER). The significance level was defined as p<0.05. Results Each subject performed their best to complete the aerobic capacity test. The average VO2peak of the 12 subjects was 42.77 ± 9.69 ml/kg/min (Male: 47.38 ± 9.41 ml/kg/min; Female: 36.31 ± 3.33 ml/kg/min). At rest, the calf and thigh SmO2 were 67.92%± 6.84% (SmO2-GLL), 61.42% ± 13.77% (SmO2-VLL), 64.83% ± 10.62% (SmO2-VLR)respectively; HR, VE, VO2, VO2R, VCO2 and RER were 112.08 ± 14.38, 25.96 ± 8.74 L / min 0.94 ± 0.32 L/min, 15.82 ± 4.30 ml/kg/min, 0.81 ± 0.24 L/min,0.88 ± 0.12 L/min, and 0.38 ± 0.07, respectively. Correlation analysis shows that when adolescent athletes reached the anaerobic threshold level, there was a significant correlation between muscle oxygen and cardiopulmonary: At the time of VT1, for Oxygenation index, SmO2 of GLL was highly negatively correlated with HR (r=-0.69,p<0.05), VE (r=-0.71, p<0.01), VO2R (r=-0.65, p<0.05), VCO2 (r=-0.66, p<0.05) and RER (r=-0.58, p<0.05); SmO2-VLL was also highly negatively correlated with VE (r=-0.70, p<0.05), VO2R (r=-0.70, p<0.05), VCO2 (r=-0.66, p<0.05); Additionally, there is also high inverse correlation between SmO2-VLR and HR (r=-0.66, p<0.05), VE (r=-0.70, p<0.05), VO2R (r=-0.66, p<0.05), VCO2 (r=-0.68, p<0.05), RER (r=-0.60, p<0.05). In terms of deoxygenation indexes, ΔSmO2-GLL was highly negatively correlated with VE (r=-0.61, p<0.05), VO2R  (r=-0.64, p<0.05) and VCO2 (r=-0.59, p<0.05); While, ΔSmO­2-VLL was highly negatively correlated with HR (r=-0.62, p<0.05), VE (r=-0.72, p<0.01),VO2R (r=-0.80, p<0.01) and VCO2(r=-0.84, p<0.01); ΔSmO2-VLR was correlated with HR (r=-0.75, p<0.01), VE (r=-0.62, p<0.05), VO2R (r=-0.58, p<0.05) and RER (r=-0.74, p<0.01), and it also shows highly negative correlation. When VT2 occurred, only SmO2 of the GLL in the oxygenation indexes was highly positively correlated with HR (r=0.65, p<0.05), there was no correlation between GLL-SmO2 and any other gas exchange indexes. In terms of muscle deoxygenation indexes, only ΔSmO2 in the thigh VLR was significantly negatively correlated with RER (r=-0.75, p<0.01). Conclusions Based on these results, there is a high correlation between NIRS-derived regional muscle oxygen saturation (Oxygenation and Deoxygenation indexes) of lower extremities and cardiopulmonary index (HR, VE, VO2R, VCO2, RER) during CPET of young cyclists at first Ventilatory threshold, however, it is still unclear whether there is a significant correlation between muscle oxygen saturation of lower extremities and other cardiopulmonary indexes when second Ventilatory threshold occurs except Heart rate or Minute ventilation

    Phase-locked scroll waves defy turbulence induced by negative filament tension

    Get PDF
    Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scrollwaves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scrollwaves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations

    Analytical Studies on a Modified Nagel-Schreckenberg Model with the Fukui-Ishibashi Acceleration Rule

    Full text link
    We propose and study a one-dimensional traffic flow cellular automaton model of high-speed vehicles with the Fukui-Ishibashi-type (FI) acceleration rule for all cars, and the Nagel-Schreckenberg-type (NS) stochastic delay mechanism. By using the car-oriented mean field theory, we obtain analytically the fundamental diagrams of the average speed and vehicle flux depending on the vehicle density and stochastic delay probability. Our theoretical results, which may contribute to the exact analytical theory of the NS model, are in excellent agreement with numerical simulations.Comment: 3 pages previous; now 4 pages 2 eps figure

    Spectral Superresolution of Multispectral Imagery with Joint Sparse and Low-Rank Learning

    Full text link
    Extensive attention has been widely paid to enhance the spatial resolution of hyperspectral (HS) images with the aid of multispectral (MS) images in remote sensing. However, the ability in the fusion of HS and MS images remains to be improved, particularly in large-scale scenes, due to the limited acquisition of HS images. Alternatively, we super-resolve MS images in the spectral domain by the means of partially overlapped HS images, yielding a novel and promising topic: spectral superresolution (SSR) of MS imagery. This is challenging and less investigated task due to its high ill-posedness in inverse imaging. To this end, we develop a simple but effective method, called joint sparse and low-rank learning (J-SLoL), to spectrally enhance MS images by jointly learning low-rank HS-MS dictionary pairs from overlapped regions. J-SLoL infers and recovers the unknown hyperspectral signals over a larger coverage by sparse coding on the learned dictionary pair. Furthermore, we validate the SSR performance on three HS-MS datasets (two for classification and one for unmixing) in terms of reconstruction, classification, and unmixing by comparing with several existing state-of-the-art baselines, showing the effectiveness and superiority of the proposed J-SLoL algorithm. Furthermore, the codes and datasets will be available at: https://github.com/danfenghong/IEEE\_TGRS\_J-SLoL, contributing to the RS community
    • …
    corecore