78 research outputs found

    Навигационная Π·Π°Π΄Π°Ρ‡Π° космичСского Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° дистанционного зондирования Π—Π΅ΠΌΠ»ΠΈ ΠΏΠΎ съСмкС Π·Π΅ΠΌΠ½ΠΎΠΉ повСрхности

    Get PDF
    Π ΠΎΠ·Π³Π»ΡΠ΄Π°Ρ”Ρ‚ΡŒΡΡ Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ Π½Π°Π²Ρ–Π³Π°Ρ†Ρ–ΠΉΠ½ΠΎΡ— Π·Π°Π΄Π°Ρ‡Ρ– космічного Π°ΠΏΠ°Ρ€Π°Ρ‚Ρƒ дистанційного зондування Π—Π΅ΠΌΠ»Ρ– використанням ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–Π² Π·ΠΉΠΎΠΌΠΊΠΈ Π·Π΅ΠΌΠ½ΠΎΡ— ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ–. Π—Π°Π΄Π°Ρ‡Π° Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π° Π² Ρ‚Ρ€ΠΈ Π΅Ρ‚Π°ΠΏΠΈ: попСрСдня Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π° ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠ° Π·Π½Ρ–ΠΌΠΊΠ° для виділСння Ρ‚Π° Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΈΡ… Π»Ρ–Π½Ρ–ΠΉ Π½Π°Π·Π΅ΠΌΠ½ΠΈΡ… об’єктів, Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ Π·Π°Π΄Π°Ρ‡Ρ– суміщСння Ρ‚ΠΎΡ‡ΠΊΠΎΠ²ΠΈΡ… об’єктів для Π²ΠΈΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ ΠΏΠΎΡ…ΠΈΠ±ΠΎΠΊ Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠ°Ρ†Ρ–Ρ— Π½Π° ΠΏΠ΅Ρ€ΡˆΠΎΠΌΡƒ Π΅Ρ‚Π°ΠΏΡ–, визначСння ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Ρ€ΡƒΡ…Ρƒ космічного Π°ΠΏΠ°Ρ€Π°Ρ‚Π°, Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‡ΠΈ нСв’язку растрових ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΌΡ–ΠΆ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π·Π½Ρ–ΠΌΠΊΠ° Ρ‚Π° ΠΊΠ°Ρ‚Π°Π»ΠΎΠ³ΠΎΠ²ΠΈΠΌ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΎΠΌ.The navigation task of satellite have solved using the Earth remote sound picture. Firstly, some contours selected at the picture. Secondly, those contours recognized to use the cartographic contours. Then, authors used some methods of superposition two spot pictures. Thirdly, the data of orbital motion were estimating by least square method.РассматриваСтся Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ КА Π”Π—Π— с использованиСм ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² съСмки Π·Π΅ΠΌΠ½ΠΎΠΉ повСрхности. Π—Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ΅Π½Π° Π² Ρ‚Ρ€ΠΈ этапа: ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ тСматичСская ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° снимка с Ρ†Π΅Π»ΡŒΡŽ выдСлСния ΠΈ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ Π½Π°Π·Π΅ΠΌΠ½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ совмСщСния Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² с Ρ†Π΅Π»ΡŒΡŽ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ошибок ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, Π΄ΠΎΠΏΡƒΡ‰Π΅Π½Π½Ρ‹Ρ… Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ этапС, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² двиТСния КА, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ нСвязку растровых ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ снимка ΠΈ ΠΊΠ°Ρ‚Π°Π»ΠΎΠ³ΠΎΠ²Ρ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ

    A high-pressure hydrogen time projection chamber for the MuCap experiment

    Full text link
    The MuCap experiment at the Paul Scherrer Institute performed a high-precision measurement of the rate of the basic electroweak process of nuclear muon capture by the proton, ΞΌβˆ’+pβ†’n+Ξ½ΞΌ\mu^- + p \rightarrow n + \nu_\mu. The experimental approach was based on the use of a time projection chamber (TPC) that operated in pure hydrogen gas at a pressure of 10 bar and functioned as an active muon stopping target. The TPC detected the tracks of individual muon arrivals in three dimensions, while the trajectories of outgoing decay (Michel) electrons were measured by two surrounding wire chambers and a plastic scintillation hodoscope. The muon and electron detectors together enabled a precise measurement of the ΞΌp\mu p atom's lifetime, from which the nuclear muon capture rate was deduced. The TPC was also used to monitor the purity of the hydrogen gas by detecting the nuclear recoils that follow muon capture by elemental impurities. This paper describes the TPC design and performance in detail.Comment: 15 pages, 13 figures, to be submitted to Eur. Phys. J. A; clarified section 3.1.2 and made minor stylistic corrections for Eur. Phys. J. A requirement

    Vectorial Ribaucour Transformations for the Lame Equations

    Get PDF
    The vectorial extension of the Ribaucour transformation for the Lame equations of orthogonal conjugates nets in multidimensions is given. We show that the composition of two vectorial Ribaucour transformations with appropriate transformation data is again a vectorial Ribaucour transformation, from which it follows the permutability of the vectorial Ribaucour transformations. Finally, as an example we apply the vectorial Ribaucour transformation to the Cartesian background.Comment: 12 pages. LaTeX2e with AMSLaTeX package

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ξ²-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ„ΠΈΡ‚ΠΎΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΈ для ΡƒΡ‡Π΅Ρ‚Π° асиммСтрии ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π²ΠΈΠ΄ΠΎΠ² растСний

    Get PDF
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ для Ρ„ΠΈΡ‚ΠΎΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ экологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° основС Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… шкал с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΊΠ°Ρ€Π΄ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ вСроятной асиммСтрии ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π²ΠΈΠ΄ΠΎΠ² растСний. ЭкологичСскиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ„ΠΈΡ‚ΠΎΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ шкалами, Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½. Π’ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ части Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° кривая ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π²ΠΈΠ΄Π° ΠΈΠΌΠ΅Π΅Ρ‚ Ρ„ΠΎΡ€ΠΌΡƒ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π΄Π΅ΠΆΠ½ΠΎ Π°ΠΏΠΏΡ€ΠΎΠΊΡΠΈΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ Гаусса. Π­Ρ‚ΠΎ позволяСт ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ обосновано с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ°Ρ€Π΄ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ нСпосрСдствСнно ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ значСниями Π²ΠΈΠ΄Π°, Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ экологичСского ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΠ° Π²ΠΈΠ΄Π°. УсрСднСнныС значСния ΠΎΡ†Π΅Π½ΠΎΠΊ экологичСских ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΠΎΠ² Π²ΠΈΠ΄ΠΎΠ² сообщСства, Π²Π·Π²Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΈΡ… ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ покрытия, Π΄Π°ΡŽΡ‚ Ρ„ΠΈΡ‚ΠΎΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ экологичСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°. ΠŸΡ€ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊ ΠΌΠ°Ρ€Π³ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ позициям Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π° происходит ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ асиммСтричности распрСдСлСния Π²ΠΈΠ΄ΠΎΠ². Π’Π°ΠΊΠΎΠ΅ явлСниС Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ исслСдовании Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚ΠΎΠ². Π­Ρ‚ΠΈ явлСния Ρ‚Π°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ слСдствиСм матСматичСских свойств экологичСских шкал. Для модСлирования ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° распрСдСлСния Π²ΠΈΠ΄ΠΎΠ² Π² качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ симмСтричной гауссовой ΠΌΠΎΠ΄Π΅Π»ΠΈ примСняСтся Ξ²-функция. Π­Ρ‚Π° функция ΠΌΠΎΠΆΠ΅Ρ‚ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ симмСтричныС, Ρ‚Π°ΠΊ ΠΈ асиммСтричныС распрСдСлСния. Π’Π°ΠΊ ΠΊΠ°ΠΊ фитоиндикация выполняСт ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ Π² сравнСнии с ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ°, Ρ‚ΠΎ Π²ΠΏΠΎΠ»Π½Π΅ умСстно Ξ²-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Ρ„ΠΈΡ‚ΠΎΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΈ. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ξ²-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Π·ΠΎΠ½Ρƒ ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌΠ° Π²ΠΈΠ΄Π° Π½Π° основС Π΅Π³ΠΎ ΠΊΠ°Ρ€Π΄ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ вСроятной асиммСтрии распрСдСлСния ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π²ΠΈΠ΄Π°. Π’Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΡ€ΠΈΠ²ΠΎΠΉ распрСдСлСния Π²ΠΈΠ΄Π° Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡΡƒΠ·ΠΈΡ‚ΡŒ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ экологичСского Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Π² условиях ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²ΠΈΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ наблюдаСмоС ΠΎΠ±ΠΈΠ»ΠΈΠ΅ Π² сообщСствС. БоотвСтствСнно, это ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½ΡƒΡŽ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒΒ Π²ΠΈΠ΄ΠΎΠ² Π² сообщСствС ΠΈ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ‚Β Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ большСй надСТности Ρ„ΠΈΡ‚ΠΎΠΈΠ½Π΄ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ†Π΅Π½ΠΎΠΊ

    On elliptic solutions of the quintic complex one-dimensional Ginzburg-Landau equation

    Full text link
    The Conte-Musette method has been modified for the search of only elliptic solutions to systems of differential equations. A key idea of this a priory restriction is to simplify calculations by means of the use of a few Laurent series solutions instead of one and the use of the residue theorem. The application of our approach to the quintic complex one-dimensional Ginzburg-Landau equation (CGLE5) allows to find elliptic solutions in the wave form. We also find restrictions on coefficients, which are necessary conditions for the existence of elliptic solutions for the CGLE5. Using the investigation of the CGLE5 as an example, we demonstrate that to find elliptic solutions the analysis of a system of differential equations is more preferable than the analysis of the equivalent single differential equation.Comment: LaTeX, 21 page

    Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling g_P

    Full text link
    The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.Comment: Updated figure 1 and small changes in wording to match published versio

    Measurement of the Rate of Muon Capture in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling gPg_P

    Full text link
    The rate of nuclear muon capture by the proton has been measured using a new experimental technique based on a time projection chamber operating in ultra-clean, deuterium-depleted hydrogen gas at 1 MPa pressure. The capture rate was obtained from the difference between the measured ΞΌβˆ’\mu^- disappearance rate in hydrogen and the world average for the ΞΌ+\mu^+ decay rate. The target's low gas density of 1% compared to liquid hydrogen is key to avoiding uncertainties that arise from the formation of muonic molecules. The capture rate from the hyperfine singlet ground state of the ΞΌp\mu p atom is measured to be Ξ›S=725.0Β±17.4sβˆ’1\Lambda_S=725.0 \pm 17.4 s^{-1}, from which the induced pseudoscalar coupling of the nucleon, gP(q2=βˆ’0.88mΞΌ2)=7.3Β±1.1g_P(q^2=-0.88 m_\mu^2)=7.3 \pm 1.1, is extracted. This result is consistent with theoretical predictions for gPg_P that are based on the approximate chiral symmetry of QCD.Comment: submitted to Phys.Rev.Let

    Ocean-bottom seismographs based on broadband MET sensors: architecture and deployment case study in the Arctic

    Get PDF
    The Arctic seas are now of particular interest due to their prospects in terms of hydrocarbon extraction, development of marine transport routes, etc. Thus, various geohazards, including those related to seismicity, require detailed studies, especially by instrumental methods. This paper is devoted to the ocean-bottom seismographs (OBS) based on broadband molecular–electronic transfer (MET) sensors and a deployment case study in the Laptev Sea. The purpose of the study is to introduce the architecture of several modifications of OBS and to demonstrate their applicability in solving different tasks in the framework of seismic hazard assessment for the Arctic seas. To do this, we used the first results of several pilot deployments of the OBS developed by Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) and IP Ilyinskiy A.D. in the Laptev Sea that took place in 2018–2020. We highlighted various seismological applications of OBS based on broadband MET sensors CME-4311 (60 s) and CME-4111 (120 s), including the analysis of ambient seismic noise, registering the signals of large remote earthquakes and weak local microearthquakes, and the instrumental approach of the site response assessment. The main characteristics of the broadband MET sensors and OBS architectures turned out to be suitable for obtaining high-quality OBS records under the Arctic conditions to solve seismological problems. In addition, the obtained case study results showed the prospects in a broader context, such as the possible influence of the seismotectonic factor on the bottom-up thawing of subsea permafrost and massive methane release, probably from decaying hydrates and deep geological sources. The described OBS will be actively used in further Arctic expeditions
    • …
    corecore