862 research outputs found

    Soil texture is a stronger driver of the maize rhizosphere microbiome and extracellular enzyme activities than soil depth or the presence of root hairs

    Get PDF
    Aims Different drivers are known to shape rhizosphere microbiome assembly. How soil texture (Texture) and presence or lack of root hairs (Root Hair) of plants affect the rhizosphere microbiome assembly and soil potential extracellular enzyme activities (EEA) at defined rooting depth (Depth) is still a knowledge gap. We investigated effects of these drivers on microbial assembly in rhizosphere and on potential EEA in root-affected soil of maize. Methods Samples were taken from three depths of root hair defective mutant rth3 and wild-type WT maize planted on loam and sand in soil columns after 22 days. Rhizosphere bacterial, archaeal, fungal and cercozoan communities were analysed by sequencing of 16S rRNA gene, ITS and 18S rRNA gene fragments. Soil potential EEA of ss-glucosidase, acid phosphatase and chitinase were estimated using fluorogenic substrates. Results The bacterial, archaeal and cercozoan alpha- and beta-diversities were significantly and strongly altered by Texture, followed by Depth and Root Hair. Texture and Depth had a small impact on fungal assembly, and only fungal beta-diversity was significantly affected. Significant impacts by Depth and Root Hair on beta-diversity and relative abundances at taxonomic levels of bacteria, archaea, fungi and cercozoa were dependent on Texture. Likewise, the patterns of potential EEA followed the trends of microbial communities, and the potential EEA correlated with the relative abundances of several taxa. Conclusions Texture was the strongest driver of rhizosphere microbiome and of soil potential EEA, followed by Depth and Root Hair, similarly to findings in maize root architecture and plant gene expression studies

    The Effects of Oral Consumption of Selenium Nanoparticles on Chemotactic and Respiratory Burst Activities of Neutrophils in Comparison with Sodium Selenite in Sheep

    Get PDF
    The present study was designed to compare the effects of nano-selenium and of sodium selenite on the chemotactic and respiratory burst activities of neutrophils in sheep. Fifteen sheep were randomly divided into three groups. Groups 1 and 2 received selenium nanoparticles (1 mg/kg) or sodium selenite (1 mg/kg) orally, respectively, for ten consecutive days, and the third group was considered as the control. To determine the chemotactic and respiratory burst activities of the neutrophils, the leading front assay and the NBT test were used on heparinized blood samples that were collected at different intervals (days 0, 10th, 20th, and 30th). The results obtained showed that the chemotactic activities in groups 1 and 2 increased significantly on the 10th, 20th, and 30th day, compared to day 0, and on the 20th day in comparison with the 10th day, while in group 2, there was a significant decrease on the 30th day compared to the 20th day. The chemotactic activities in group 1 were significantly higher than in group 2 on the 10th day and in the control group on the 10th, 20th, and 30th day, but the chemotactic activities in group 2 were significantly higher than those in the control group only on the 20th day. On the 30th day into the experiment, the respiratory bursts in groups 1 and 2 were significantly stronger in comparison with those at day 0. Overall, nano-selenium increased the chemotactic and respiratory burst activities more significantly than sodium selenite, which is suggestive of a stronger stimulatory effect of the Se nanoparticles on intracellular activities

    Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition

    Get PDF
    Selenium supplement has been shown in clinical trials to reduce the risk of different cancers including lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better understanding of the downstream cellular targets of MSA will provide information on its mechanism of action and will help to optimize its use in combination therapies with PI3K inhibitors. For this study, the effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and reactive oxygen species production were analysed in A549 cells. FOXO3a subcellular localization was examined in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate that MSA induces FOXO3a nuclear translocation in A549 cells and in U2OS cells that stably express GFP-FOXO3a. Interestingly, sodium selenite, another selenium compound, did not induce any significant effects on FOXO3a translocation despite inducing apoptosis. Single strand break of DNA, disruption of tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied by induction of apoptosis are late events occurring after 24h of MSA treatment in A549 cells. Our findings suggest that FOXO3a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent with synergistic antiproliferative effects with cisplatin. (C) 2015 Elsevier Ltd. All rights reserved.Ministerio de Ciencia e Innovacion, Spain [SAF2011-25726]; Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR)-Generalitat de Catalunya [2014SGR1017]; Ministerio de Economia y Competitividad, Spain [SAF2014-56059-R]; Fundacao para a Ciencia e a Tecnologia (FCT) Research Center [UID/BIM/04773/2013CBMR 1334]; National Institute of Health, USA [1R01CA118434-01A2, 1P01CA163223-01A1]; National Science Foundation, USA [EPS-0447479]; FCT [SFRH/BPD/84634/2012]; prize ICREA Academia for excellence in research; ICREA Foundation-Generalitat de Cataluny

    Fish, Mercury, Selenium and Cardiovascular Risk: Current Evidence and Unanswered Questions

    Get PDF
    Controversy has arisen among the public and in the media regarding the health effects of fish intake in adults. Substantial evidence indicates that fish consumption reduces coronary heart disease mortality, the leading cause of death in developed and most developing nations. Conversely, concerns have grown regarding potential effects of exposure to mercury found in some fish. Seafood species are also rich in selenium, an essential trace element that may protect against both cardiovascular disease and toxic effects of mercury. Such protective effects would have direct implications for recommendations regarding optimal selenium intake and for assessing the potential impact of mercury exposure from fish intake in different populations. Because fish consumption appears to have important health benefits in adults, elucidating the relationships between fish intake, mercury and selenium exposure, and health risk is of considerable scientific and public health relevance. The evidence for health effects of fish consumption in adults is reviewed, focusing on the strength and consistency of evidence and relative magnitudes of effects of omega-3 fatty acids, mercury, and selenium. Given the preponderance of evidence, the focus is on cardiovascular effects, but other potential health effects, as well as potential effects of polychlorinated biphenyls and dioxins in fish, are also briefly reviewed. The relevant current unanswered questions and directions of further research are summarized

    The role of melano‐macrophage aggregates in the storage of mercury and other metals: An example from yelloweye rockfish (Sebastes ruberrimus)

    Full text link
    Melano‐macrophage aggregates, collections of specialized cells of the innate immune system of fish, are considered a general biomarker for contaminant toxicity. To elucidate further the relationship between macrophage aggregates and metals exposure, yelloweye rockfish (Sebastes ruberrimus), a long‐lived species, were sampled from the east and west coasts of Prince of Wales Island, Alaska. Metals concentrations in livers (inorganic Hg, methyl mercury, Se, Ni, Cd, Cu, Zn) and spleens (inorganic Hg and methyl mercury) were determined, as well as their correlations with melano‐macrophage aggregate area. Sections of liver tissue were analyzed by laser ablation‐inductively coupled plasma–mass spectrometry to determine how metals were spatially distributed between hepatocytes and macrophage aggregates. The concentration of inorganic Hg in whole tissue was the best predictor of macrophage area in yelloweye livers and spleens. Macrophage aggregates had higher relative concentrations than most metals compared with the surrounding hepatocytes. However, not all metals were accumulated to the same degree, as evidenced by differences in the ratios of metals in macrophages compared with hepatocytes. Laser ablation data were corroborated with the results of X‐ray synchrotron fluorescence imaging of a yelloweye liver section. Hepatic macrophage aggregates in yelloweye rockfish may play an important role in the detoxification and storage of Hg and other metals. Environ Toxicol Chem 2015;34:1918–1925. © 2015 SETACPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112257/1/etc3009.pd
    • 

    corecore