137 research outputs found

    On metamaterial circular polarizers based on metal N-helices

    Get PDF

    Gold Helix Photonic Metamaterials: a numerical parameter study

    Get PDF
    We have recently shown that metamaterials composed of threedimensional gold helices periodically arranged on a square lattice can be used as compact “thin-film” circular polarizers with one octave bandwidth. The physics of the motif of these artificial crystals is closely related to that of microwave sub-wavelength helical antennas in end-fire geometry. Here, we systematically study the dependence of the metamaterial’s chiral optical properties on helix pitch, helix radius, two-dimensional lattice constant, wire radius, number of helix pitches, and angle of incidence. Our numerical calculations show that the optical properties are governed by resonances of the individual helices, yet modified by interaction effects. Furthermore, our study shows possibilities and limitations regarding performance optimization

    Three-dimensional femtosecond laser nanolithography of crystals

    Get PDF
    Nanostructuring hard optical crystals has so far been exclusively feasible at their surface, as stress induced crack formation and propagation has rendered high precision volume processes ineffective. We show that the inner chemical etching reactivity of a crystal can be enhanced at the nanoscale by more than five orders of magnitude by means of direct laser writing. The process allows to produce cm-scale arbitrary three-dimensional nanostructures with 100 nm feature sizes inside large crystals in absence of brittle fracture. To showcase the unique potential of the technique, we fabricate photonic structures such as sub-wavelength diffraction gratings and nanostructured optical waveguides capable of sustaining sub-wavelength propagating modes inside yttrium aluminum garnet crystals. This technique could enable the transfer of concepts from nanophotonics to the fields of solid state lasers and crystal optics.Comment: Submitted Manuscript and Supplementary Informatio

    Analogue of the quantum hanle effect and polarization conversion in non-hermitian plasmonic metamaterials

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.htmlThe Hanle effect, one of the first manifestations of quantum theory introducing the concept of coherent superposition between pure states, plays a key role in numerous aspects of science varying from applicative spectroscopy to fundamental astrophysical investigations. Optical analogues of quantum effects help to achieve deeper understanding of quantum phenomena and, in turn, to develop cross-disciplinary approaches to realizations of new applications in photonics. Here we show that metallic nanostructures can be designed to exhibit a plasmonic analogue of the quantum Hanle effect and the associated polarization rotation. In the original Hanle effect, time-reversal symmetry is broken by a static magnetic field. We achieve this by introducing dissipative level crossing of localized surface plasmons due to nonuniform losses, designed using a non-Hermitian formulation of quantum mechanics. Such artificial plasmonic "atoms" have been shown to exhibit strong circular birefringence and circular dichroism which depends on the value of loss or gain in the metal-dielectric nanostructure. © 2012 American Chemical Society.This work has been supported in part by EPSRC (UK). P.G. acknowledges Royal Society for a Newton International Fellowship. F.J.R.-F. acknowledges support from grant FPI of GV and the Spanish MICINN under contracts CONSOLIDER EMET CSD2008-00066 and TEC2011-28664-C02-02.Ginzburg, P.; Rodríguez Fortuño, FJ.; Martínez Abietar, AJ.; Zayats, AV. (2012). Analogue of the quantum hanle effect and polarization conversion in non-hermitian plasmonic metamaterials. Nano Letters. 12(12):6309-6314. https://doi.org/10.1021/nl3034174S63096314121

    Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials

    Full text link
    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal invariant topological insulators. Because of limitations imposed by nature, topologically non-trivial electronic order seems to be uncommon except in small-band-gap semiconductors with strong spin-orbit interactions. In this Article we show that artificial electromagnetic structures, known as metamaterials, provide an attractive platform for designing photonic analogues of topological insulators. We demonstrate that a judicious choice of the metamaterial parameters can create photonic phases that support a pair of helical edge states, and that these edge states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    Directly patterned substrate-free plasmonic 'nanograter' structures with unusual Fano resonances

    Get PDF
    The application of three-dimensional (3D) plasmonic nanostructures as metamaterials,nano-antennas, and other devices faces challenges in producing metallic nanostructures with easily definable orientations, sophisticated shapes and smooth surfaces that are operational in the optical regime and beyond. Here, we demonstrate that complex 3D nanostructures can be readily achieved with focused-ion-beam irradiation-induced folding and examine the optical characteristics of plasmonic “nanograter” structures that are composed of free-standing Au films.These 3D nanostructures exhibit interesting 3D hybridization in current flows and exhibit unusual and well-scalable Fano resonances at wavelengths ranging from 1.6 to 6.4 μm. Upon the introduction of liquids of various refractive indices to the structures, a strong dependence of the Fano resonance is observed, with spectral sensitivities of 1400 nm and 2,040 nm per refractive-index-unit (RIU) under figures of merit of 35.0 and 12.5, respectively, for low-order and high-order resonance in the near-infrared region. This work indicates the exciting, increasing relevance of similarly constructed 3D free standing nanostructures in the research and development of photonics and metamaterials

    Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource

    Full text link
    corecore