37 research outputs found

    Cytochalasin D reduces Ca2+ sensitivity and maximum tension via interactions with myofilaments in skinned rat cardiac myocytes

    No full text
    The F-actin disrupter cytochalasin D depresses cardiac contractility, an effect previously ascribed to the interaction of cytochalasin D with cytoskeletal actin. We have investigated the possibility that this negative inotropic effect is due to the interaction of cytochalasin D with sarcomeric actin of the thin filament.Confocal images of Triton X-100-skinned myocytes incubated with a fluorescent conjugate of cytochalasin D revealed a longitudinally striated pattern of binding, consistent with a myofibrillar rather than cytoskeletal structure.Tension–pCa relationships were determined at sarcomere lengths (SLs) of 2.0 and 2.3 ÎŒm following 2 min incubation with 1 ÎŒm cytochalasin D. Cytochalasin D significantly reduced the pCa for half-maximal activation (pCa50) at both SLs. The shift in pCa50 was significantly greater at a SL of 2.3 ÎŒm compared with that at a SL of 2.0 ÎŒm. Cytochalasin D had no effect on the Hill co-efficient at either SL.Cytochalasin D significantly reduced the maximum tension at both SLs.We suggest that the length-dependent decrease in myofilament Ca2+ sensitivity in response to cytochalasin D is due to a decrease in the affinity of troponin C for Ca2+.Cytochalasin D has been used for many years as the agent of choice for disruption of cytoskeletal actin. However, we have demonstrated for the first time an interaction of cytochalasin D with sarcomeric actin of the thin filament, which can account for the effects of cytochalasin D on cardiac contractility

    Mechano‐electric and mechano‐chemo‐transduction in cardiomyocytes

    No full text
    Cardiac excitation-contraction (E-C) coupling is influenced by (at least) three dynamic systems that couple and feedback to one another (see Abstract Figure). Here we review the mechanical effects on cardiomyocytes that include mechano-electro-transduction (commonly referred to as mechano-electric coupling, MEC) and mechano-chemo-transduction (MCT) mechanisms at cell and molecular levels which couple to Ca2+ -electro and E-C coupling reviewed elsewhere. These feedback loops from muscle contraction and mechano-transduction to the Ca2+ homeodynamics and to the electrical excitation are essential for understanding the E-C coupling dynamic system and arrhythmogenesis in mechanically loaded hearts. This white paper comprises two parts, each reflecting key aspects from the 2018 UC Davis symposium: MEC (how mechanical load influences electrical dynamics) and MCT (how mechanical load alters cell signalling and Ca2+ dynamics). Of course, such separation is artificial since Ca2+ dynamics profoundly affect ion channels and electrogenic transporters and vice versa. In time, these dynamic systems and their interactions must become fully integrated, and that should be a goal for a comprehensive understanding of how mechanical load influences cell signalling, Ca2+ homeodynamics and electrical dynamics. In this white paper we emphasize current understanding, consensus, controversies and the pressing issues for future investigations. Space constraints make it impossible to cover all relevant articles in the field, so we will focus on the topics discussed at the symposium

    Structural heterogeneity of the rat pulmonary vein myocardium: consequences on intracellular calcium dynamics and arrhythmogenic potential

    No full text
    Abstract Mechanisms underlying ectopic activity in the pulmonary vein (PV) which triggers paroxysmal atrial fibrillation are unknown. Although several studies have suggested that calcium signalling might be involved in these arrhythmias, little is known about calcium cycling in PV cardiomyocytes (CM). We found that individual PV CM showed a wide range of transverse tubular incidence and organization, going from their virtual absence, as described in atrial CM, to well transversally organised tubular systems, like in ventricular CM. These different types of CM were found in groups scattered throughout the tissue. The variability of the tubular system was associated with cell to cell heterogeneity of calcium channel (Cav1.2) localisation and, thereby, of Cav1.2-Ryanodine receptor coupling. This was responsible for multiple forms of PV CM calcium transient. Spontaneous calcium sparks and waves were not only more abundant in PV CM than in LA CM but also associated with a higher depolarising current. In conclusion, compared with either the atrium or the ventricle, PV myocardium presents marked structural and functional heterogeneity
    corecore