4 research outputs found

    MHC presentation via autophagy and how viruses escape from it

    Get PDF
    T cells detect infected and transformed cells via antigen presentation by major histocompatibility complex (MHC) molecules on the cell surface. For T cell stimulation, these MHC molecules present fragments of proteins that are expressed or taken up by the cell. These fragments are generated by distinct proteolytic mechanisms for presentation on MHC class I molecules to cytotoxic CD8+ and on MHC class II molecules to helper CD4+ T cells. Proteasomes are primarily involved in MHC class I ligand and lysosomes, in MHC class II ligand generation. Autophagy delivers cytoplasmic material to lysosomes and, therefore, contributes to cytoplasmic antigen presentation by MHC class II molecules. In addition, it has been recently realized that this process also supports extracellular antigen processing for MHC class II presentation and cross-presentation on MHC class I molecules. Although the exact mechanisms for the regulation of these antigen processing pathways by autophagy are still unknown, recent studies, summarized in this review, suggest that they contribute to immune responses against infections and to maintain tolerance. Moreover, they are targeted by viruses for immune escape and could maybe be harnessed for immunotherap

    IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network

    Get PDF
    Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity

    Checking the garbage bin for problems in the house, or how autophagy assists in antigen presentation to the immune system

    Full text link
    Macroautophagy was originally discovered as a nutrient salvage pathway during starvation. By now it has not only become clear that degradation of cytoplasmic constituents via transport by autophagosomes to lysosomes can be used for innate and adaptive immunity, but that the core machinery assists antigen presentation to the immune system by a variety of vesicular transport pathways. All of these rely on the presentation of small protein waste fragments, which are generated by a variety of catabolic pathways, including macroautophagy, on major histocompatibility complex (MHC) molecules. In this review, we will point out how classical macroautophagy, as well as phagocytosis and exocytosis, which both benefit from the core autophagic machinery, assist in antigen presentation on MHC class I and II molecules to CD8+ and CD4+ T cells, respectively. Finally to high-light that macroautophagy is always intimately interconnected with cell death in addition to the various supported vesicular transport function, its role in lymphocyte, especially T cell, development and function will be discussed. From this body of work a picture is emerging that the core machinery of macroautophagy can be used for a variety of vesicular transport pathways and to modulate cell survival, besides its classical role in delivering intracellular material for lysosomal degradation

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore