19 research outputs found

    Matrix of orthogonalized atomic orbital coefficients representation for radicals and ions

    Get PDF
    Chemical (molecular, quantum) machine learning relies on representing molecules in unique and informative ways. Here, we present the matrix of orthogonalized atomic orbital coefficients (MAOC) as a quantum-inspired molecular and atomic representation containing both structural (composition and geometry) and electronic (charge and spin multiplicity) information. MAOC is based on a cost-effective localization scheme that represents localized orbitals via a predefined set of atomic orbitals. The latter can be constructed from such small atom-centered basis sets as pcseg-0 and STO-3G in conjunction with guess (non-optimized) electronic configuration of the molecule. Importantly, MAOC is suitable for representing monatomic, molecular, and periodic systems and can distinguish compounds with identical compositions and geometries but distinct charges and spin multiplicities. Using principal component analysis, we constructed a more compact but equally powerful version of MAOC—PCX-MAOC. To test the performance of full and reduced MAOC and several other representations (CM, SOAP, SLATM, and SPAHM), we used a kernel ridge regression machine learning model to predict frontier molecular orbital energy levels and ground state single-point energies for chemically diverse neutral and charged, closed- and open-shell molecules from an extended QM7b dataset, as well as two new datasets, N-HPC-1 (N-heteropolycycles) and REDOX (nitroxyl and phenoxyl radicals, carbonyl, and cyano compounds). MAOC affords accuracy that is either similar or superior to other representations for a range of chemical properties and systems

    CO<sub>2</sub> on Graphene:Benchmarking Computational Approaches to Noncovalent Interactions

    Get PDF
    Designing and optimizing graphene-based gas sensors in silico entail constructing appropriate atomistic representations for the physisorption complex of an analyte on an infinite graphene sheet, then selecting accurate yet affordable methods for geometry optimizations and energy computations. In this work, diverse density functionals (DFs), coupled cluster theory, and symmetry-adapted perturbation theory (SAPT) in conjunction with a range of finite and periodic surface models of bare and supported graphene were tested for their ability to reproduce the experimental adsorption energies of CO2 on graphene in a low-coverage regime. Periodic results are accurately reproduced by the interaction energies extrapolated from finite clusters to infinity. This simple yet powerful scheme effectively removes size dependence from the data obtained using finite models, and the latter can be treated at more sophisticated levels of theory relative to periodic systems. While for small models inexpensive DFs such as PBE-D3 afford surprisingly good agreement with the gold standard of quantum chemistry, CCSD(T), interaction energies closest to experiment are obtained by extrapolating the SAPT results and with nonlocal van der Waals functionals in the periodic setting. Finally, none of the methods and models reproduce the experimentally observed CO2 tilted adsorption geometry on the Pt(111) support, calling for either even more elaborate theoretical approaches or a revision of the experiment

    Stereoinversion of tetrahedral <i>p</i>-block element hydrides

    Get PDF
    The potential energy surfaces of 15 tetrahedral p-block element hydrides were screened on the multireference level. It was addressed whether stereoinversion competes against other reactions, such as reductive H2-elimination or hydride loss, and if so, along which pathway the stereomutation occurs. Importantly, stereoinversion transition structures for the ammonium cation (C4v) and the tetrahydridoborate anion (Cs) were identified for the first time. Revisiting methane’s Cs symmetric inversion transition structure with the mHEAT+ protocol revealed an activation enthalpy for stereoinversion, in contrast to all earlier studies, which is 5 kJ mol−1 below the C–H bond dissociation enthalpy. Square planar structures were identified lowest in energy only for the inversion of AlH4−, but a novel stepwise Cs-inversion was discovered for SiH4 or PH4+. Overall, the present contribution delineates essentials of the potential energy surfaces of p-block element hydrides, while structure–energy relations offer design principles for the synthetically emerging field of structurally constrained compounds

    Locating Guest Molecules inside Metal–Organic Framework Pores with a Multilevel Computational Approach

    Get PDF
    Molecular docking has traditionally mostly been employed in the field of protein–ligand binding. Here, we extend this method, in combination with DFT-level geometry optimizations, to locate guest molecules inside the pores of metal–organic frameworks. The position and nature of the guest molecules tune the physicochemical properties of the host–guest systems. Therefore, it is essential to be able to reliably locate them to rationally enhance the performance of the known metal–organic frameworks and facilitate new material discovery. The results obtained with this approach are compared to experimental data. We show that the presented method can, in general, accurately locate adsorption sites and structures of the host–guest complexes. We therefore propose our approach as a computational alternative when no experimental structures of guest-loaded MOFs are available. Additional information on the adsorption strength in the studied host–guest systems emerges from the computed interaction energies. Our findings provide the basis for other computational studies on MOF–guest systems and contribute to a better understanding of the structure–interaction–property interplay associated with them

    Stereoinversion of tetrahedral p-block element hydrides

    Get PDF
    The potential energy surfaces of 15 tetrahedral p-block element hydrides were screened on the multireference level. It was addressed whether stereoinversion competes against other reactions, such as reductive H2-elimination or hydride loss, and if so, along which pathway the stereomutation occurs. Importantly, stereoinversion transition structures for the ammonium cation (C4v) and the tetrahydridoborate anion (Cs) were identified for the first time. Revisiting methane’s Cs symmetric inversion transition structure with the mHEAT+ protocol revealed an activation enthalpy for stereoinversion, in contrast to all earlier studies, which is 5 kJ mol−1 below the C–H bond dissociation enthalpy. Square planar structures were identified lowest in energy only for the inversion of AlH4−, but a novel stepwise Cs-inversion was discovered for SiH4 or PH4+. Overall, the present contribution delineates essentials of the potential energy surfaces of p-block element hydrides, while structure–energy relations offer design principles for the synthetically emerging field of structurally constrained compounds

    Collagen breaks at weak sacrificial bonds taming its mechanoradicals

    Get PDF
    Collagen is a force-bearing, hierarchical structural protein important to all connective tissue. In tendon collagen, high load even below macroscopic failure level creates mechanoradicals by homolytic bond scission, similar to polymers. The location and type of initial rupture sites critically decide on both the mechanical and chemical impact of these micro-ruptures on the tissue, but are yet to be explored. We here use scale-bridging simulations supported by gel electrophoresis and mass spectrometry to determine breakage points in collagen. We find collagen crosslinks, as opposed to the backbone, to harbor the weakest bonds, with one particular bond in trivalent crosslinks as the most dominant rupture site. We identify this bond as sacrificial, rupturing prior to other bonds while maintaining the material’s integrity. Also, collagen’s weak bonds funnel ruptures such that the potentially harmful mechanoradicals are readily stabilized. Our results suggest this unique failure mode of collagen to be tailored towards combatting an early onset of macroscopic failure and material ageing

    Steric “attraction”: not by dispersion alone

    No full text
    Non-covalent interactions between neutral, sterically hindered organic molecules generally involve a strong stabilizing contribution from dispersion forces that in many systems turns the ‘steric repulsion’ into a ‘steric attraction’. In addition to London dispersion, such systems benefit from electrostatic stabilization, which arises from a short-range effect of charge penetration and gets bigger with increasing steric bulk. In the present work, we quantify this contribution for a diverse set of molecular cores, ranging from unsubstituted benzene and cyclohexane to their derivatives carrying tert-butyl, phenyl, cyclohexyl and adamantyl substituents. While the importance of electrostatic interactions in the dimers of sp2-rich (e.g., π-conjugated) cores is well appreciated, less polarizable assemblies of sp3-rich systems with multiple short-range CH···HC contacts between the bulky cyclohexyl and adamantyl moieties are also significantly influenced by electrostatics. Charge penetration is drastically larger in absolute terms for the sp2-rich cores, but still has a non-negligible effect on the sp3-rich dimers, investigated herein, both in terms of their energetics and equilibrium interaction distances. These results emphasize the importance of this electrostatic effect, which has so far been less recognized in aliphatic systems compared to London dispersion, and are therefore likely to have implications for the development of force fields and methods for crystal structure prediction

    Unlocking the Potential:Predicting Redox Behavior of Organic Molecules, from Linear Fits to Neural Networks

    No full text
    Redox-active organic molecules, i.e., molecules that can relatively easily accept and/or donate electrons, are ubiquitous in biology, chemical synthesis, and electronic and spintronic devices, such as solar cells and rechargeable batteries, etc. Choosing the best candidates from an essentially infinite chemical space for experimental testing in a target application requires efficient screening approaches. In this Review, we discuss modern in silico techniques for predicting reduction and oxidation potentials of organic molecules that go beyond conventional first-principles computations and thermodynamic cycles. Approaches ranging from simple linear fits based on molecular orbital energy approximation and energy difference approximation to advanced regression and neural network machine learning algorithms employing complex descriptors of molecular compositions, geometries, and electronic structures are examined in conjunction with relevant literature examples. We discuss the interplay between ab initio data and machine learning (ML), i.e., whether it is better to base predictions on low-level quantum-chemical results corrected with ML or to bypass first-principles computations entirely and instead rely on elaborate deep learning architectures. Finally, we list currently available data sets of redox-active organic molecules and their experimental and/or computed properties to facilitate the development of screening platforms and rational design of redox-active organic molecules
    corecore