110 research outputs found

    Effect of high-pressure rolling followed by laser processing on mechanical properties, microstructure and residual stress distribution in multi-pass welds of 304L stainless steel

    Get PDF
    Multi-pass fusion welding by a filler material (wire) is normally carried out to join thick steel sections used in most engineering applications. Multiple thermal cycles from a multi-pass weld resulted in a variable distribution of residual stress field across the weld and through the thickness. Presence of tensile residual stresses can be detrimental to the integrity and the service behaviour of the welded joint. In addition to a complex distribution of residual stress state, multi-pass welds also form dendritic grain structure, which are repeatedly heated, resulting in segregation of alloying elements. In this research, microstructural refinement with modification of residual stress state was attempted by applying post-weld cold rolling followed by laser processing and then cold rolling. The residual stress was determined non-destructively by using neutron diffraction. Post-weld cold rolling followed by laser processing was carried out to induce recrystallization of the cold rolled grains. Microstructural characterisation indicates a significant grain refinement near the capping pass. However, post-weld cold rolling followed by laser processing reinstates the lock-in stress. In this study, it was demonstrated that a complete recrystallized microstructure with compressive state of stress can be formed when a further cold rolling is applied on the laser processed, recrystallized microstructure

    Comparative study of evolution of residual stress state by local mechanical tensioning and laser processing of ferritic and austenitic structural steel welds.

    Get PDF
    Complex thermal stresses generated in welded structures are undesirable but inevitable in fusion welding. The presence of residual stresses can be detrimental to the integrity of a welded joint. In this research, redistribution of residual stress magnitude and profile was studied and compared in two multi-pass welded structural alloys (API X100 and 304L stainless steel) after cold rolling and laser processing. The residual stress field was studied by neutron diffraction using the SALSA strain scanner at their reactor neutron source at ILL, Grenoble. In addition to a complex distribution of residual stress state, multi-pass welds also forms dendritic grain structure, which are repeatedly heated, resulting in segregation of alloying elements. Dendritic grain structure is weaker and segregation of alloying elements may result in formation of corrosion microcells as well as reduction in overall corrosion prevention due to depletion of alloying elements in certain areas. The modification of as-welded residual stress state was done by cold rolling which was followed by laser processing to create a recrystallized microstructure to minimise segregation. The main objective of this study is to understand the suitability of this novel manufacturing technique to create a stress free weldment with recrystallised grain structure. Hardness evolution in the welded structures was scanned following welding, post weld cold rolling and cold rolling followed by laser processing. Hardness distribution in both the structural alloys showed a significant evidence of plastic deformation near the cap pass of the weld metal. Residual stress redistribution was observed up to 4 mm from the capping pass for ferritic steel, while in austenitic steel weld, post weld cold rolling was effective in modifying the residual stress redistribution throughout the entire thickness. Laser processing in both cases reinstated the as-welded residual stress distribution and resulted in softening of the strained area

    Dissimilar metal joining of stainless steel and titanium using copper as transition metal

    Get PDF
    Joining of stainless steel and titanium dissimilar metal combination has a specific interest in the nuclear industry. Due to the metallurgical incompatibility, it has been very difficult to produce reliable joints between these metals due to the formation of FeTi and Fe2Ti types of intermetallic compounds. The metallurgical incompatibility between both materials is enhanced by the time–temperature profile of the welding process used. Brittle intermetallics (IMCs) are formed during Fe–Ti welding (FeTi and Fe2Ti). The present study uses the low thermal heat input process cold metal transfer (CMT), when compared with conventional GMAW, to deposit a copper (Cu) bead between Ti and stainless steel. Cu is compatible with Fe, and it has a lower melting point than the two base materials. The welds were produced between AMS 4911L (Ti-6Al-4V) and AISI 316L stainless steel using a CuSi-3 welding wire. The joints produced revealed two IM layers located near the parent metals/weld interfaces. The hardness of these layers is higher than the remainder of the weld bead. Tensile tests were carried out with a maximum strength of 200 MPa, but the interfacial failure could not be avoided. Ti atomic migration was observed during experimental trials; however, the IMC formed are less brittle than FeTi, inducing higher mechanical properties.EPSR

    Investigation of dissimilar metal welds by energy-resolved neutron imaging

    Get PDF
    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption

    CORROSION BEHAVIOUR OF WIRE PLUS ARC ADDITIVE MANUFACTURING (WAAM) BUILT HIGH STRENGTH PIPELINE STEELS

    Get PDF
    Wire and Arc Additive Manufacturing (WAAM) is of interest for many industries that requires parts with complex geometries via metal 3D printing. WAAM is capable of producing metal components with high deposition rates, large build volumes, minimum material waste and lead times and good structural integrity. Previous research in this field has focused on achieving correct geometrical and defect free deposition, while maintaining good mechanical properties when compared with wrought alloy. This is the first investigated study devoted to the corrosion behaviour of WAAM pipeline steels in artificial seawater. The corrosion rate of electrode rod 90 solid (ER90S-G) WAAM deposited low alloy steel (as deposited and heat-treated conditions) were compared to F22 wrought alloy of similar chemical composition. Corrosion behaviour of the low alloy steels were assessed using mass loss and electrochemical characterisation and correlated to the microstructural characteristics and hardness. The experimental results showed improved corrosion resistance and strength in ER90 WAAM built low alloy as compared to the wrought. Optical micrographs and hardness measurements confirmed that a martensitic structure was formed under air cooled condition in as deposited ER90, while tempered-martensitic structures were observed in heat treated ER90 and F22 wrought alloy steels. This research is the first step in creation of corrosion data of WAAM built structures and compare to their wrought version. This underpinning correlation between microstructural variation and corrosion pattern would allow modification of the WAAM process in a suitable manner for successful commercial applications

    Residual Stress Characterization and Control in the Additive Manufacture of Large Scale Metal Structures

    Get PDF
    Additive Manufacture of metals is an area of great interest to many industrial sectors. All metal additive manufacturing processes suffer with problems of residual stresses and subsequent distortion or performance issues. Wire + Arc Additive Manufacture (WAAM) is a metal additive manufacture process that is suitable for the production of large scale engineering structures. Paramount to the successful industrial application of WAAM is the understanding and control of residual stress development and their subsequent effects. Vertical inter-pass rolling can be used to reduce these residual stresses, but its potential is limited due to the absence of lateral restraint of the wall. So it deforms the wall in its transverse direction rather than reducing longitudinal tensile residual stresses, which is the main source of the distortion. The potential of a new pinch-roller concept is currently being investigated at Cranfield University with very promising preliminary results: It was possible to entirely eliminate the distortion of a Ti 6Al 4V WAAM wall

    Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components

    Get PDF
    Laser welding-brazing technique, using a continuous wave (CW) fibre laser with 8000 W of maximum power, was applied in conduction mode to join 2 mm thick steel (XF350) to 6 mm thick aluminium (AA5083-H22), in a lap joint configuration with steel on the top. The steel surface was irradiated by the laser and the heat was conducted through the steel plate to the steel-aluminium interface, where the aluminium melts and wets the steel surface. The welded samples were defect free and the weld micrographs revealed presence of a brittle intermetallic compounds (IMC) layer resulting from reaction of Fe and Al atoms. Energy Dispersive Spectroscopy (EDS) analysis indicated the stoichiometry of the IMC as Fe2Al5 and FeAl3, the former with maximum microhardness measured of 1145 HV 0.025/10. The IMC layer thickness varied between 4 to 21 μm depending upon the laser processing parameters. The IMC layer showed an exponential growth pattern with the applied specific point energy (Esp) at a constant power density (PD). Higher PD values accelerate the IMC layer growth. The mechanical shear strength showed a narrow band of variation in all the samples (with the maximum value registered at 31.3 kN), with a marginal increase in the applied Esp. This could be explained by the fact that increasing the Esp results into an increase in the wetting and thereby the bonded area in the steel-aluminium interface

    Wire plus arc additive manufactured functional steel surfaces enhanced by rolling

    Get PDF
    Surface waviness (SW) is one of the major problems confronting the economical use of as-deposited components made with the wire plus arc additive manufactured (WAAM) process. The SW acts as a stress raiser, thereby reducing the tensile properties and fatigue life of the component. In this study, the effect of compressive residual stress on the mechanical and fatigue behaviour of the as-deposited WAAM mild steel component was carried out using a process which combines deposition and rolling on the WAAM component surface. The fractured faces and microstructure were characterised by a scanning electron and optical microscope. The microstructural changes were characterised by X-ray diffraction techniques. The results revealed that an increase in the notch radius and compressive stress induced by rolling on the as-deposited condition reduced the SW from 0.18 to 0.08 mm with a reduction of stress concentration, consequently reducing crack initiation and propagation and improving fatigue life. This work shows that rolling has a dual effect on as-deposited WAAM mild steel components with a new functional surface
    • …
    corecore